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Abstract

The correlation function of a financial index of the New York stock exchange,

the S&P 500, is analyzed at 1 min intervals over the 13-year period, Jan 84 –

Dec 96. We quantify the correlations of the absolute values of the index incre-

ment. We find that these correlations can be described by two different power

laws with a crossover time t× ≈ 600 min. Detrended fluctuation analysis gives

exponents α1 = 0.66 and α2 = 0.93 for t < t× and t > t× respectively. Power

spectrum analysis gives corresponding exponents β1 = 0.31 and β2 = 0.90 for

f > f× and f < f× respectively.

A topic of considerable recent interest to both the economics and physics communities is

whether there are correlations in economic time series and, if so, how to best quantify these

correlations [1,2,3,4]. Here we study the S&P 500 index of the New York stock exchange over

a 13-year period (Fig. 1a). We calculate the logarithmic increments g(t) ≡ lnZ(t+1)−lnZ(t)

over a fixed time lag of 1 min, where Z(t) denotes the index at time t (t counts the number

of minutes during the opening hours of the stock market), and quantify the correlations as

follows:

(i) We find that the correlation function of g(t) decays exponentially with a characteristic

time of the order of 1-10 min, but the absolute value |g(t)| does not. This result is consistent

with previous studies on several economic series [2,3,4].
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(ii) We calculate the power spectrum of |g(t)| (Fig. 2a), and find that the data fit not

one but rather two separate power laws: for f > f× the power law exponent is β1 = 0.31,

while for f < f× the exponent β2 = 0.90 is three times larger; here f× is called the crossover

frequency.

(iii) We confirm these results using the DFA (detrended fluctuation analysis) method

(see Fig.2b), which allows accurate estimates of exponents independent of local trends [5].

From the behavior of the power spectrum, we expect that the DFA method will also predict

two distinct regions of power law behavior, with exponents α1 = 0.66 and α2 = 0.95 for

t less than or greater than a characteristic time scale t× ≡ 1/f×, where we have used the

general mathematical result [6] that α = (1 + β)/2. The data of Fig. 2b yield α1 = 0.66,

α2 = 0.93, thereby confirming the consistency of the power spectrum and DFA methods.

Also the crossover time is very close to the result obtained from the power spectrum, with

t× ≈ 1/f× ≈ 600 min (about 1.5 trading days).

We observed the crossover behavior noted above by considering the entire 13-year period

studied, so it is natural to enquire whether it will still hold for periods smaller than 13 y.

Therefore, we choose a sliding window (with size 1 y) and calculate both exponents α1 and

α2 within this window as the window is dragged, down the data set. We find (Fig. 1b)

that the value of α1 is very “stable” (independent of the position of the window) fluctuating

around the mean value 2/3. Surprisingly, however, the variation of α2 is much greater,

showing sudden jumps when very volatile periods enter or leave the time window.

We studied several standard mathematical models, such as fractional Brownian motion

[6,7] and fractional ARIMA processes [8], commonly used to account for long-range corre-

lation in a time series and found that none of them can reproduce the large fluctuation of

α2.
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FIGURES

FIG. 1. (a) Raw data analyzed: The S&P 500 index Z(t)for the 13-year period 1 Jan 1984 –

31 Dec 1996 at intervals of 1 min. Note the large fluctuations, such as that on 19 Oct 1987 (“black

Monday”). (b) Results of dragging a window of size 1 y down the same data base, one month at a

time, and calculating the best fit exponent α1 (dashed line) and α2 (full line) for the time intervals

t < t× and t > t× respectively.

FIG. 2. Plot of (a) the power spectrum S(f) and (b) the detrended fluctuation analysis F (t)

of the absolute values of the 1 min increments. The lines show the best power law fits (r values are

better than 0.99) to the data above and below the crossover frequency of f× = (1/570) min−1 in (a)

and of the crossover time t× = 600 min in (b). To remove artificial correlations resulting from the

intra-day pattern of the market activity [9,10], we analyze normalized data |gn(t)| ≡ |g(t)|/A(t),

where A(t) is the activity at the same time of the day averaged over all days of the data set. For the

DFA method, we integrate |gn(t)| once; then we determine the fluctuations F (t) of the integrated

signal around the best linear fit in a time window of size t.
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