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Abstract

The correlation function of a financial index of the New York stock exchange,
the S&P 500, is analyzed at 1 min intervals over the 13-year period, Jan 84 —
Dec 96. We quantify the correlations of the absolute values of the index incre-
ment. We find that these correlations can be described by two different power
laws with a crossover time tyx ~ 600 min. Detrended fluctuation analysis gives
exponents a; = 0.66 and as = 0.93 for t < t, and t > t, respectively. Power
spectrum analysis gives corresponding exponents 31 = 0.31 and G5 = 0.90 for

f > fx and f < f« respectively.

A topic of considerable recent interest to both the economics and physics communities is
whether there are correlations in economic time series and, if so, how to best quantify these
correlations [1,2,8,4]. Here we study the S&P 500 index of the New York stock exchange over
a 13-year period (Fig. 1a). We calculate the logarithmic increments g(t) = In Z(t+1)—In Z(t)
over a fixed time lag of 1 min, where Z(¢) denotes the index at time ¢ (¢ counts the number
of minutes during the opening hours of the stock market), and quantify the correlations as
follows:

(i) We find that the correlation function of g(t) decays exponentially with a characteristic
time of the order of 1-10 min, but the absolute value |g(t)| does not. This result is consistent

with previous studies on several economic series [2,3,4].



(ii) We calculate the power spectrum of |g(t)| (Fig. 2a), and find that the data fit not
one but rather two separate power laws: for f > f. the power law exponent is 3; = 0.31,
while for f < fx the exponent 35 = 0.90 is three times larger; here f is called the crossover
frequency.

(iii) We confirm these results using the DFA (detrended fluctuation analysis) method
(see Fig.2b), which allows accurate estimates of exponents independent of local trends [f].
From the behavior of the power spectrum, we expect that the DFA method will also predict
two distinct regions of power law behavior, with exponents a; = 0.66 and ay = 0.95 for
t less than or greater than a characteristic time scale tx = 1/fx, where we have used the
general mathematical result [0] that a = (1 + (3)/2. The data of Fig. 2b yield oy = 0.66,
as = 0.93, thereby confirming the consistency of the power spectrum and DFA methods.
Also the crossover time is very close to the result obtained from the power spectrum, with
tx =~ 1/fx ~ 600min (about 1.5 trading days).

We observed the crossover behavior noted above by considering the entire 13-year period
studied, so it is natural to enquire whether it will still hold for periods smaller than 13 y.
Therefore, we choose a sliding window (with size 1y) and calculate both exponents «; and
a2 within this window as the window is dragged, down the data set. We find (Fig. 1b)
that the value of «; is very “stable” (independent of the position of the window) fluctuating
around the mean value 2/3. Surprisingly, however, the variation of s is much greater,
showing sudden jumps when very volatile periods enter or leave the time window.

We studied several standard mathematical models, such as fractional Brownian motion
[6,77] and fractional ARIMA processes [§], commonly used to account for long-range corre-
lation in a time series and found that none of them can reproduce the large fluctuation of

Q9.
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FIGURES
FIG. 1. (a) Raw data analyzed: The S&P 500 index Z(t)for the 13-year period 1 Jan 1984 —

31 Dec 1996 at intervals of 1 min. Note the large fluctuations, such as that on 19 Oct 1987 (“black
Monday”). (b) Results of dragging a window of size 1y down the same data base, one month at a
time, and calculating the best fit exponent a; (dashed line) and ag (full line) for the time intervals

t <ty and t > t« respectively.

FIG. 2. Plot of (a) the power spectrum S(f) and (b) the detrended fluctuation analysis F'(¢)
of the absolute values of the 1 min increments. The lines show the best power law fits (r values are

better than 0.99) to the data above and below the crossover frequency of fy = (1/570) min—!

in (a)
and of the crossover time ¢y = 600 min in (b). To remove artificial correlations resulting from the
intra-day pattern of the market activity [910], we analyze normalized data |g,(t)| = |g(t)|/A(¢),
where A(t) is the activity at the same time of the day averaged over all days of the data set. For the
DFA method, we integrate |g,(t)| once; then we determine the fluctuations F(¢) of the integrated

signal around the best linear fit in a time window of size t.
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