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Abstract. In time series problems, noise can be divided into two categories: dynamic noise

which drives the process, and observational noise which is added in the measurement process,

but does not inuence future values of the system. In this framework, empirical volatilities (the

squared relative returns of prices) exhibit a signi�cant amount of observational noise. To model

and predict their time evolution adequately, we estimate state space models that explicitly include

observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging

from three weeks (for foreign exchange) to three to �ve months (for stock indices). In most cases, a

two-dimensional hidden state is required to yield residuals that are consistent with white noise. We

compare these results with ordinary autoregressive models (without a hidden state) and �nd that

autoregressive models underestimate the relaxation times by about two orders of magnitude due to

their ignoring the distinction between observational and dynamic noise. This new interpretation

of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic

volatility models and to GARCH models, and is useful for several problems in �nance, including

risk management and the pricing of derivative securities.

Data sets used. Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years).

Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years).
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1 Introduction

Modeling and predicting the volatility of �nancial time series has become one of the central areas

in �nance and trading; examples range from pricing derivative securities to computing the risk of a

portfolio. Volatility is usually predicted using generalized autoregressive conditional heteroskedas-

tic (GARCH) models; Bollerslev, Engle and Nelson (1995) guide through the GARCH literature,

and Engle (1995) collects some of the key papers.

Here we present an alternative to GARCH that models the underlying dynamics using a state

space model. This allows us to describe the hidden process in terms of variables natural for

a dynamic system, such as decay times for shocks, its spectrum, and the dimensionality of the

underlying process. Stochastic volatility models (see Shephard (1996) for a review) are a variant of

the general state space approach presented here. They di�er in that the mapping from the hidden

variable to the observed variable is nonlinear. The interpretation developed in this article can also

be helpful for understanding and characterizing stochastic volatility models.

This article is organized as follows: Section 2 discusses observational noise and dynamic noise,

and reviews intuitions and interpretations for linear systems, important for understanding the

results in physical terms, such as decay times of volatility shocks. Section 3 de�nes and explains

the formalism of state space models. Variations and interpretations that are typical in �nance and

in econometrics are given in Section 4. Section 5 describes the three data sets used for the empirical

studies. The results are presented in Section 6, and the e�ect of ignoring existing observational

noise on the model is discussed in Section 7. Section 8 summarizes the �ndings and discusses some

of the applications of this approach for noisy time series in �nance.

2 Some background concepts

2.1 Observational noise and dynamic noise

In time series modeling, one crucial question is whether or not observational noise is present in the

data. Observational noise of a high level can pose a severe problem if it is not treated properly,

leading to models that underestimate the functional relation between past and future values. A

typical example of such observational noise is when an astronomer observes a star: uctuations

in the atmosphere, or a subway train passing by and shaking a telescope that points to the star,

will not inuence the dynamics of the star. In contrast, a noise component that does inuence the

dynamics of a system is called dynamic noise. For example, in an autoregressive process, the noise

truly moves the state (sometimes also expressed as \the noise drives the system"), and subsequent

values are derived from that moved state.

This article focuses on discrete time dynamics, typically modeled by di�erence equations or

maps. The distinction between observational noise and dynamic noise is also important for con-

tinuous time dynamics, typically modeled by di�erential equations.
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2.2 Interpretations of linear systems

To facilitate the interpretation of state space models (introduced in Section 3), we �rst review

autoregressive processes without observational noise, and characterize them from several perspec-

tives. A simple way of generating a time series is through an autoregressive (AR) process of order p,

AR[p] (Yule 1927, Priestley 1981, Oppenheim and Schafer 1989)

x(t) =

pX
i=1

ai x(t� i) + �(t) ; (1)

where �(t) denotes an uncorrelated Gaussian distributed random variable with mean zero and

constant variance �2, N (0; �2). Through the eyes of a physicist, such a process can be interpreted

as a combination of relaxators and damped oscillators (Honerkamp 1993). The simplest case is an

AR[1] process

x(t) = ax(t� 1) + �(t) : (2)

It can be characterized in the time domain as a relaxator by an exponentially decaying impulse

response, proportional to exp(�t=�); with the relaxation time

� = �
1

log a
: (3)

After this time, the amplitude of an impulse will have decayed to 1/e or 37% of its initial value.

In the frequency domain, an AR process can be interpreted as a �lter responding to white

noise. The power spectrum of an AR[1] process drops o� with

S(!) =
�2

j1� ae�i!j2
=

�2

1 + a2 � 2 cos!
: (4)

For an AR[2] process, there are two qualitatively di�erent cases, depending on the values of the

parameters. We can always rewrite a univariate AR[2] model as a vector-valued AR[1] model using

the transformation

A =

�
a1 a2
1 0

�
: (5)

Its eigenvalues

�i =
a1
2
�

r
a21
4
+ a2 (6)

characterize the behavior of the AR[2] process. If the eigenvalues are real (a21=4 + a2 > 0), the

AR[2] process can be characterized as the superposition of two relaxators, and the spectrum drops

o� monotonically with increasing frequencies. The corresponding decay constants are

� i = �
1

log�i
(i = 1; 2) : (7)

If the eigenvalues are complex, the AR[2] process describes a resonance, corresponding to a hump

in the spectrum.1 In both cases, the spectrum is given by

S(!) =
�2

j1� a1e�i! � a2e�2i!j2
: (8)

1For a damped oscillator (the case of complex eigenvalues), the parameters can be expressed through the char-
acteristic period T and the relaxation time � as

a1 = 2 cos

�
2�

T

�
exp (�1=� )

a2 = � exp (�2=� ) :
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By increasing the model order, an AR[3] process can combine a relaxator with an oscillator, and

an AR[4] process can describe two oscillators, etc.

Despite the simplicity and multiple interpretability of AR models, not all processes in the world

are linear autoregressive. Examples of generalizations without hidden states consist of including

past q driving noise terms in the dynamics, yielding an autoregressive moving average ARMA[p; q]

processes,2 as well as including nonlinearities.3 Here we extend autoregressive models in a di�erent

direction, by allowing for a hidden state.4 The next section introduces the notation and gives the

formalism of state space modeling.

3 Formalism of linear state space models (LSSM)

In Eq. (1) the x(t) served two roles: it was the variable that was observed, and it was the variable

in which the dynamics was expressed. However, there are processes where the dynamics cannot

be observed directly because it is masked by observational noise. Thus, no direct map exists from

the observed data to the state. This requires the notion of a hidden state. In terms of notation, we

keep the letter x as the variable that contains the dynamics, and use y(t) for the observed variable.

The state, characterized by the vector ~x(t); captures all the information needed to characterize the

system at time t.

The key to state space modeling is to split the noise into two parts:

� dynamic noise ~�(t) that drives the evolution of the hidden state, and

� observational noise �(t) that is a non-explainable additive contribution to the measured y(t):

These contributions have been discussed in intuitive terms in Section 2.1. Their formal role

can be seen by observing how they enter the two equations that describe a linear state space model

(LSSM):

~x(t) = A ~x(t� 1) +~�(t); ~�(t) 2 N (0;Q) (9)

y(t) = C ~x(t) + �(t); �(t) 2 N (0; R) : (10)

Eq. (9) describes the dynamics. Eq. (10) maps the dynamics to the observation and includes the

observational noise �(t).

As in the case of the observable linear autoregressive model, discussed in Section 2.2, describing

the process via physical quantities can yield important insights. The spectrum of a LSSM is given

2While for theoretical reasons ARMA[p; p � 1] should be preferred to AR[p] processes for modeling of sampled
continuous-time processes (Phadke and Wu 1974), we �nd that in practice, di�erences in the results are small.

3The linear mapping given by Eq. (1) can be generalized to become a nonlinear mapping. Note that this is fully
within the autoregressive framework and amounts to simple regression. Nonlinear approaches include radial basis
functions (Casdagli 1989, Moody and Darken 1989, Poggio and Girosi 1990), neural networks (Lapedes and Farber
1987, Weigend, Huberman and Rumelhart 1990), and nonparametric kernel methods (Tjostheim and Auestad 1994).

4This article explores the idea of a continuous hidden state, characterized by a scalar x(t) or a vector ~x(t). The
dynamics is expressed in terms of that unobserved state, and the state is subsequently mapped to the (conditional
expectation of the) observed quantity. In contrast, Hidden Markov models (Rabiner 1989, Fraser and Dimitriadis
1994, Hamilton 1994, Bengio and Frasconi 1995, Shi and Weigend 1997) assume the hidden state to be discrete:
for each of these hidden states, there is an \agent" or \expert" (e.g., expressed as an autoregressive model) that
generates the next data point. This introduces a second level of dynamics that is described by the transitions
between the hidden states. This level of dynamics is absent in a pure autoregressive framework.
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by

S(!) = C(1�Ae�i!)�1Q
�
(1�Aei!)�1

�T
CT +R : (11)

The superscript (�)T denotes transposition. The spectra of AR processes, Eq. (8), are a subset

of Eq. (11). Note that LSSM spectra include shapes that cannot be generated by AR processes.

An important example of such a shape is a spectrum where for low frequencies the power drops

similarly to an AR[1] process (see Eq. (4)), but for higher frequencies the power remains constant

and does not continue to fall, as an AR model would require it to. This can be interpreted as

a low-frequency process whose spectral energy decreases as the frequency increases, until it is

masked by a noise oor of a noise source with a at spectrum. This low-frequency signal above a

at noise oor is the crucial spectral signature of a LSSM that cannot be emulated by an ordinary

autoregressive model.

While parameter estimation in AR models is well established (e.g., by the Burg or the Durbin-

Levinson algorithms), it is more cumbersome in the case of state space models. A standard

approach uses the expectation maximization (EM) algorithm (Dempster, Laird and Rubin 1977),

a general iterative procedure for estimating parameters for models with hidden variables. In the

E-step, it is assumed that the parameters of the model are known, and the hidden variables are

estimated. In the M-step, the estimates of the hidden variables are taken literally and the values

of the parameters are adjusted. This approach was �rst applied to LSSM by Shumway and Sto�er

(1982).

Speci�cally for the case of the LSSM, the �rst E-step starts from the initial values of the

parameters A;Q;C; R; and estimates the hidden dynamic variable ~x(t) using a Kalman �lter.

With the following de�nitions

� ztjt0 := the predicted value of a quantity z(t) based on the data y(1); :::; y(t0),

� 
tjt0 := the covariance matrix of the estimated ~x(t), and

� �tjt0 := the variance of the prediction errors (y(t)� ytjt0),

the equations for the Kalman �lter are (Kalman 1960, Gelb 1974, Sorenson 1985, Harvey 1989, Aoki

1990, Bomho� 1994, Hamilton 1994, Mendel 1995):


tjt�1 = A
t�1jt�1A
T +Q (12)

�tjt�1 = C
tjt�1C
T +R (13)

K = 
tjt�1C
T��1

tjt�1 (14)


tjt = (1�KC)
tjt�1 (15)

~xtjt�1 = A~xt�1jt�1 (16)

ytjt�1 = C~xtjt�1 (17)

~xtjt = ~xtjt�1 +K(y(t)� ytjt�1) : (18)

There is a crucial di�erence between the �rst four equations and the last three. The �rst four

equations, Eq. (12{15), do not contain the data, they only describe relations between the param-

eters A;Q;C; R;
;�, and K. Their purpose is to �nd the value of K (the Kalman gain) that
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subsequently enters Eq. (18). K gives the appropriate weight to the added term originating in the

error between the actual observation y(t) and prediction ytjt�1:

For true prediction, i.e., when y(t) has not yet been observed, Eq. (16) has to be used for the

unobserved state variable, and Eq. (17) for the observable. For model parameter estimation, on

the other hand, the entire training data can be used, and an improved estimate of ~xtjN can be

obtained by the following three equations (Harvey 1989):

B = 
tjtA
T
�1

t+1jt (19)

~xtjN = ~xtjt +B(~xt+1jN �A~xtjt) (20)


tjN = 
tjt +B(
t+1jN �
t+1jt)B
T : (21)

This concludes the E-step.

In the subsequent M-step, the parameters A;Q;C; R are updated; the derivation of the equa-

tions can be found in Honerkamp (1993). The iterative model �tting process ends when a conver-

gence criterion is met. This concludes the description of how the model parameters are updated

in the M-step.

Once a model has been built, its quality can be evaluated by several di�erent criteria, including:

� Predictive accuracy. True out-of-sample predictions are generated using Eq. (17) on a test

set that comes after the training period. The accuracy of the predictions can be compared

to competing models by di�erent evaluation criteria, such as squared errors or robust errors.

� Whiteness of the prediction errors. The model should explain all temporal correlations

in the data: a perfect model takes the signal and turns it into white noise. Statistically, the

question is whether we can reject (at a certain level of signi�cance) the null hypothesis that

the residuals are uncorrelated. Following Brockwell and Davis (1991), we use a Kolmogorov-

Smirnov test to determine whether the periodogram of the residuals is consistent with a at

white noise spectrum.

� Generating data from the model. The distribution of a certain feature can be derived

from realizations of the model and compared with that feature as directly computed from

the observed data.

For linear models, two additional criteria are useful:

� Behavior in the time domain (relaxation times). The parameters in linear models are

related to relaxation times of the corresponding oscillators and relaxators. When the relax-

ation times are too small (of order of one time step), they usually only �t noise, indicates

that the order of the model is too large.

� Behavior in the frequency domain (spectrum). The spectrum of the linear process can

be computed from the parameters of the estimated models through Eq. (11). Since the

spectrum of the model should correspond to the expectation of the periodogram of the data,

comparing the spectrum to the periodogram is another important qualitative criterion.
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The suggestions listed here are just some of the useful general criteria that will be used in this

article. For any speci�c problem, there are additional, more speci�c smoke alarms and sanity

checks.

4 Applications of state space models to �nance

This section discusses two common applications of state space models in �nancial data, and com-

pares them to our approach. For simplicity of notation, this discussion is written for the case of a

scalar x(t):

x(t) = ax(t� 1) + �(t) (22)

y(t) = cx(t) + �(t) : (23)

The dynamic equation, Eq. (22), is characterized by the single AR[1] coe�cient a; �(t) is the

dynamic noise that drives the dynamics. The observation equation, Eq. (23), maps the unobserved

state x(t) to the observed variable by scaling it with c. The added observational noise, �(t), does

not enter the dynamics.

4.1 Smoothing

The �rst approach decomposes the variance and results in a smoother series. It can be interpreted

as a method for trend estimation. Here, parameter a is not estimated from the data to characterize

the dynamics (as in our approach), but rather set to unity. Without loss of generality we can also

set c to unity, yielding

x(t) � x(t� 1) = �(t) (24)

y(t) = x(t) + �(t) : (25)

Eq. (24) interprets �(t) as the �rst di�erence of the series. Reducing the variance of �(t) by moving

some of it onto �(t) results in x(t) as a smoothed version of y(t). The variance of the original data

y(t) is thus decomposed into observational noise, �(t), and a smoother signal, x(t). This can be

expressed in a Bayesian framework as a prior on the smoothness of the time series, as discussed by

Kitagawa and Gersch (1996). Note that Eq. (24) resembles Brownian motion. However, it is not

to be interpreted that way here, but as a smoothing constraint for the undisturbed signal instead.

The smaller �(t), the smoother x(t).

This smoothing approach is taken in most state space applications in �nance. Bolland and

Connor (1996) add to this approach a second non-constant part that is a linear function of the

di�erence of the last two values of the state. This is e�ectively adding a constraint on the second

di�erences (curvatures) of x(t), in addition to the �rst di�erences. Moody and Wu (1996), Moody

and Wu (1997a), and Moody and Wu (1997b) use two variations of the simple smoothing model

with a = 1, and use the term \true price" for the smoothed version of the observed prices.

4.2 Variable parameter AR processes

The second variation of the state space model also uses the state equation to model a slowly varying

quantity as in Eq. (24), but the interpretation of the observation equation changes substantially.
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The constant c from Eq. (23) is replaced by y(t� 1). The equation then becomes

y(t) = x(t)y(t� 1) + �(t) ; (26)

representing an AR[1] process. x(t) has become an autoregressive parameter that slowly varies with

time, and the former observational noise �(t) now acts as dynamic noise (Wells 1996), whereas we

assume the parameters that characterize the system are constant over time.

4.3 Modeling noisy linear systems

The two cases above do not do justice to the dynamic structure of Eq. (22). In contrast, this article

focuses on estimating the full hidden dynamics from the data. This allows us to characterize the

process as a linear damped system of relaxators and oscillators, driven by dynamic noise, and

observed through a veil of added observational noise.

In the econometric literature, stochastic volatility models have been used to describe the dy-

namic structure of returns, see Shephard (1996) for a recent review. In the notation of the present

article, a stochastic volatility model can be expressed as

x(t) = a0 + a1x(t� 1) + �(t) (27)

y(t) = �(t) exp(x(t)) : (28)

The idea behind using exp(x(t)) is to model the skewed distribution of squared returns found

for the empirical data. Parameter estimation in this model is cumbersome due to the log-normal

distribution of exp(x(t)). It is usually based on the generalized method of moments, quasi-likelihood

estimation or Markov chain Monte Carlo methods. In contrast to stochastic volatility models, we

apply a static transformation to the data that will be introduced in the next section in order to

make the distribution of squared return approximately normal. This allows us to use as standard

maximum likelihood framework for the parameter estimation.

5 Data

This article reports results on the following data sets:

� High frequency DEM/USD foreign exchange rates.5 We began with eight years of data

(through June 29, 1995) spaced apart 30 minutes in #-time (Theta-time). We dropped

all points with missing values, and then took every fourth of the remaining points for our

analysis, e�ectively downsampling to two hours in #-time.6 #-time removes daily and weekly

seasonality: times of day with a high mean volatility are expanded, and times of day and

weekends with low volatility are contracted (Dacorogna, Gauvreau, M�uller, Olsen and Pictet

1996).

5We thank Michel Dacorogna (Olsen & Associates, Zurich) for the high frequency DEM/USD exchange rate
data.

6Whether half-hour or two-hour intervals in #-time are taken does not change the results reported here, since
the time scale of the dynamics that we �nd is two orders of magnitude slower than the sampling interval. For larger
changes in the sampling time, Brown (1990) shows that the estimated (unconditional) volatility decreases by 13%
as the sampling interval of S & P 500 Index futures is changed from one minute to one hour.
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� Daily stock indices. We use two stock indices:

{ Nikkei 225 index (40 years of daily data, through October 15, 1996, 12288 points total),7

{ Dow Jones Industrial Average (25 years of daily data, through October 16, 1987, 6252

points total).8
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Figure 1: This �gure displays a six-month window of the high frequency foreign exchange data,
sampled at two hour intervals in #-time. The top panel shows the prices, the middle panel shows
the relative returns, and the bottom panel shows the series used in our analysis, i.e., after applying
the logarithm and scaling it to zero mean and unit variance.

The top panel of Fig. 1 graphs the level of DEM/USD for the �rst half of 1995. Its periodogram,

shown in the left panel of Fig. 2, drops to �rst approximation as the spectrum of a random walk

whose 1=f2 line is also indicated. (f denotes the frequency.) The signature of observational noise|

a noise oor masking the signal at high frequencies|is absent: the periodogram continues to drop

7We thank Morio Yoda (Nikko Securities, Tokyo) for the Nikkei 225 stock index data.
8The Dow Jones Industrial Average data set is described in LeBaron and Weigend (1998) and available through

www.stern.nyu.edu/~aweigend/Research.
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to the highest time scale. The result is that price levels p(t) of �nancial instruments do not exhibit

signi�cant observational noise; all the \noise" on prices is dynamic, i.e., it re-enters the dynamic

equation.

The central panel of Fig. 1 shows the di�erence of the logarithm of the price levels

log p(t)� log p(t� 1) = log
p(t)

p(t� 1)
�

p(t)� p(t� 1)

p(t� 1)
: (29)

This quantity can be interpreted as the logarithm of the geometric growths, i.e., as the logarithm of

the ratio of the prices. Using the fact that the logarithm Taylor expands around 1 as log � � 1+ �,

it can also be interpreted as the returns normalized by the levels, i.e., the relative returns. Note in

the central panel of Fig. 1 that the width of the \band" varies over time; regimes with larger shocks

(positive or negative) alternate with regimes with smaller widths. The corresponding periodogram

of the relative returns is shown in the right panel of Fig. 2. Note that it is essentially at: the

subsequent returns on the two-hour time scale in #-time appear to be (linearly) uncorrelated.

To exploit this observed structure in the absolute values of the relative returns, we square the

relative returns, i.e., ignoring their signs. The distribution of the squared returns is very skewed.

To make it less skewed, we take their logarithm,

y(t) = log

�
log

p(t)

p(t� 1)

�2
: (30)

The logarithm of the squared relative returns, y(t), is shown for the DEM/USD data in the the

bottom panel of Fig. 1.

The squared relative returns can be interpreted as independent realizations of a random variable

with a slowly changing mean. If the relative returns log p(t)=p(t � 1) were normally distributed

with unit variance, their squares would follow a �21 distribution. The variance of this �
2distribution

is twice its mean, implying that the realizations are very noisy indeed! This is the source of the

observational noise for volatility. On empirical data, it is well known that the relative returns

log p(t)=p(t � 1) are not normally distributed, but have fatter tails. However, the spirit of the

explanation for the observational noise still applies; see also Diebold and Lopez (1995).

Fig. 3 shows this e�ect. The periodogram of the data contains most of its power at low

frequencies. Subsequently, as the frequency increases, it begins to drop. Finally, it attens out

as the signal gets masked by this \observational noise," stemming from the noisy realizations of

the slowly changing means of the squared returns. Note the absence of a daily or weekly peak in

this periodogram: while present for data in chronological time, it has been successfully removed by

Olsen's projection of the data onto #-time. This periodogram is similar to �gures in Schnidrig and

W�urtz (1995) and in Andersen and Bollerslev (1997). However, neither of these papers interpret

the signature as evidence for observational noise, nor do they use a state space model to explain

the data.

The key features of the periodogram|a drop over many orders of magnitude for price levels,

a roughly constant level for returns, and a low frequency signal disappearing into observational

noise at higher frequencies for squared returns|hold for all the �nancial data sets we analyzed,

including six other currencies on di�erent time scales, as well as several stock indices. The next

section gives detailed results for DEM/USD and Nikkei 225, as well as brief results for the Dow

Jones industrial index.
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6 Results

Table 1 summarizes the results for the high frequency DEM/USD data, comparing linear state

space models with ordinary AR models. The linear state space models di�er crucially from the

AR models in the decay times � : while the decay times of the state space models are signi�cant,

they are negligible for the AR models where the processes typically decay within one time step.

Since the state space model is �tted to y(t) as de�ned in Eq. (30), the decay times characterize

when the logarithm of the squared relative returns has decayed to 37% of its initial value.

For �rst order models describing a single relaxator, there is a huge di�erence in decay time
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Figure 2: Periodogram of the DEM/USD prices (left), and of the relative returns (right). Expressed
in 1/time, the leftmost points correspond to 1/(8 years), 1/(4 years), 1/(2.6 years), 1/(2 years).
To guide the eye, we also plotted the 1=f2 drop in spectral power of a random walk over six orders
of magnitude. The periodogram of the returns on the right hand side is essentially at. Neither
the prices nor the returns indicate the presence of observational noise, in contrast to Fig. 3.
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between 156 time steps for the LSSM in contrast to insigni�cant 0.45 time steps for the AR process.

The eigenvalues of the second order models, given by Eq. (6), turn out to be real; the process thus

corresponds to the superposition of two relaxators. The slower one of the two relaxators settles

to around 240 of the 2-hour steps and corresponds to 20 days, whereas the slower AR relaxator

still decays in a single time step. Using third and fourth order, oscillators emerge whose resonance

frequencies 1=T correspond to about one day. They might indicate a tiny amount of periodicity

left after the transformation of the raw data to #-time, but they do not contribute signi�cantly to

the dynamics since their relaxation times are of the order of a few time steps only.
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Figure 3: Periodogram (\+") of the DEM/USD exchange rates, and spectra of the estimated state
space models (SSM) of order one (dashed line) and higher orders (solid lines).
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Models

DEM=USD
� (decay times)
1 step = 2 hours

AR coe�cients
Prob
white
noise

ENMS

LSSM(1) 156 0.994 0 0.960

LSSM(2) 240, 1.09

�
0:996 0
0 0:399

�
0.72 0.957

LSSM(3)
236
[T = 17 � = 1:6]

0
@ 0:966 0 0

0 0:507 �0:188
0 0:188 0:507

1
A 0.57 0.957

LSSM(4)
243; 1:1
[T = 8:5 � = 10]

0
BB@

0:996 0 0 0
0 0:411 0 0
0 0 0:666 �0:612
0 0 0:612 0:666

1
CCA 0.70 0.957

AR(1) 0.45 0.107 0 0.988
AR(2) 0.85, 0.64 0.100 0.066 0 0.984

AR(3)
1:25
[T = 6:5 � = 0:86]

0.097 0.062 0.044 2e-6 0.982

AR(4)
1:8; 1:2
[T = 4:1 � = 1:2]

0.095 0.058 0.039 0.049 7e-4 0.979

Table 1: Results for the volatilities of the DEM/USD exchange rates. While linear state space
models (LSSM) of order two and above �t the data well, ordinary AR models cannot explain the
structure of the data.

The decay constants presented here are de�ned for the logarithm of the squared relative re-

turns. Nonlinear transformations do not allow for an amplitude-independent interpretations of

decay times in general. However, �tting state space models directly to the absolute or squared

relative returns (without taking the logarithm) yields similar decay constants. This implies that

our characterization also hold for stochastic volatility models.

The fourth column in Table 1 shows that the residuals of the state space model of order

one are not consistent with white noise, implying that a �rst order LSSM does not describe the

data adequately. However, all higher order LSSMs produce residuals consistent with white noise

at a signi�cance level of 0.05 for the Kolmogorov-Smirnov test on the whiteness of the residuals

(Brockwell and Davis 1991). None of the residuals of the AR models are consistent with white

noise. This is another indication that AR models are not an adequate model class for volatility.

The last column gives the normalized mean squared error, ENMS; between the observed y(t)

and the predictions obtained via Eq. (17). Whereas for LSSM, the error drops quickly to a constant

level of 0.957 at order 2, it decreases for AR models at a much slower rate, and also remains at a

higher level. In an AR(10) model, for example, ENMS takes the value of 0.973, still signi�cantly

above the value of the second order LSSM.

We now turn to the power spectra. The curves in Fig. 3 are the power spectra of the state

space models.9 They are computed using Eq. (11). There is a clear di�erence between the �rst

order spectrum and the higher order spectra. The higher orders (> 2) are very similar, indicating

that the second order state space model is indeed su�cient. The spectra of the state space models

9The spectra and the periodogram are normalized. For the lowest 200 frequencies, all periodogram points are
plotted. Above this frequency, they are logarithmically thinned out for the sole reason to keep the �les reasonably
small for the on-line version. The visual impression in the printed version does not change.
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correspond well to the periodogram of the data. Note that the spectra are not obtained by some

direct smoothing of the periodogram in frequency space, but are the spectra of the state space

models which were �tted in the time domain.

Models

Nikkei225

� (decay times)
1 time step = 1 day

Prob of
white noise

ENMS

LSSM(1) 63:1 0.004 0.906
LSSM(2) 81:8; 1:45 0.56 0.905

LSSM(3)
81:2
[T = 8:7 � = 6:9]

0.64 0.905

LSSM(4)
81:7; 1:46
[T = 8:4 � = 10]

0.57 0.905

AR(1) 0:54 0 0.975
AR(2) 1:20; 0:82 0 0.959

AR(3)
1:85
[T = 6:6 � = 1:05]

7e-7 0.951

AR(4)
2:93; 1:59
[T = 4:15 � = 1:61]

0.002 0.940

Table 2: Results for the volatilities of the Nikkei 225 stock index. While linear state space models
of order two and above �t the data well, ordinary AR models cannot explain the structure of the
data.

The results for the second data set, the logarithm of absolute values of the relative changes

of the daily Nikkei 225 level, are summarized in Table 2. The key point is the large decay time

of about 3 1/2 months, revealed by the state space models of order two and above, as well as the

failure of AR models, very similar to the DEM/USD data set discussed.

The third data set, the logarithm of absolute values of the relative changes of the daily Dow

Jones Industrial Index, reveals a decay time of 117 days or about 5 months. In that case, a one

dimensional hidden state already generates residuals that are consistent with white noise. As in

the other two examples, no ordinary AR model in the observed variable explains the data. This

e�ect will be clari�ed in the next section.

7 Ignoring observational noise

The failure of AR models shown in the previous section is a consequence of the observational noise

that is present in the volatility data. Whereas linear state space models include the observational

noise explicitly in the model, autoregressive models assume that the data is free from observational

noise. We use a simple �rst order process to demonstrate the consequences of ignoring observational

noise on the autoregressive parameter.

In an AR[1] model, x(t) = ax(t� 1) + �(t), the parameter a can be estimated without bias as

ba = P
x(t� 1)x(t)P

x(t� 1)x(t� 1)
: (31)

If, however, the dynamics is covered by observational noise

y(t) = x(t) + �(t); � � N (0; R) ; (32)
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the expected value (denoted by < �>) of ba, estimated in analogy to Eq. (31) from y(t), now becomes

<ba>= < y(t� 1) y(t) >

< y(t� 1) y(t� 1) >
=

a

1 +R= <x(t)2>
: (33)

Thus, the larger the variance R of the observational noise, the worse the parameter a will be

underestimated. This e�ect is known from linear regression as the problem of errors-in-variables

(Fuller 1987). It was �rst mentioned in time series context by Kostelich (1992), see also K�onig and

Timmer (1997). The underestimation of the functional relation between past and present values

carries over to more general models, including nonlinear models (Carroll, Ruppert and Stefanski

1995, Weigend, Zimmermann and Neuneier 1996).

8 Summary and Applications

This article showed the important distinction between observational and dynamic noise. When ob-

servational noise is present, an autoregressive approach cannot model the data adequately|a state

space approach is needed to capture the hidden dynamics. In �nance, neither prices nor returns

tend to have observational noise. However, volatilities do exhibit signature of observational noise

in the periodogram: for low frequencies, there is structure above the noise oor of observational

noise.

We showed on three representative �nancial data sets that a linear state space model with full

dynamics can describe volatilities well. We also showed that the resulting models can be nicely

interpreted, both from the perspective of physics as a superposition of two simple relaxators, and

from the perspective of �nance as volatility clustering with a decay time of about three weeks (for

DEM/USD), 3 1/2 months (for Nikkei 225), and 5 months (for Dow Jones Industrial Average).

These results are in strong contrast to AR models that ignore observational noise and consequently

have a bias toward too small coe�cients, as shown in Section 7. The more promising modeling

approach using state space models over AR models for volatility suggests several applications in

�nancial markets, including

� Estimating risk. Knowing the evolution of the volatility is important for determining the

risk associated with a position on a �nancial instrument: the volatility can be interpreted as

the conditional standard deviation of the returns.

� Pricing derivative securities. Using �nancial theory, discrepancies between the predicted

volatility and the implied volatility can be translated into mispricings, which can in turn be

exploited in trading.

� Information for regime switching models. The predicted volatility can be an important

input for trading models based on the \gated experts" architecture (Weigend, Mangeas and

Srivastava 1995). In this case, the hidden state is o�ered as an additional input to the gate

to help determine the current region.

In summary, we discussed the signature of observational noise in the frequency domain and

showed on three data sets that volatilities exhibit that signature, but not the prices or returns. We

showed that allowing for a hidden process with two or more degrees of freedom, and modeling the
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full dynamics of this process, gives interpretable results yielding residuals consistent with white

noise. We are currently evaluating on several time horizons the performance for true volatility

predictions of state space models in comparison to an approach using historical data (Figlewski

1997), to GARCH (Bollerslev et al. 1995), and to stochastic volatility models (Shephard 1996).
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