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Introduction

Opinion aggregation is a well-documented phenomenon in financial markets. Studies have shown that mutual influence between agents has a significant impact on the evolution of security prices. The Cont-Bouchaud (CB) model offers a simple and attractive solution to the problem of modelling herding behaviour (Cont and Bouchaud, 1998); it builds on suggestions of Kirman (1997) to model aggregation as random encounters between agents.

The CB model uses random graph theory to represent the formation of clusters of agents through random encounters. Agents in a given cluster share common opinions about the market ; this leads to like behaviour in, for example, issuing buy/sell orders or holding positions. The CB model is exogamic: agents belonging to the same cluster hold similar opinions and therefore do not trade among themselves. The model results in a dynamics for security price returns that exhibits fat tails with exponential decay. This result is in agreement with empirical studies on security returns.

The CB model is characterised by a parameter that represents the propensity of agents to form communication links with other agents, thus forming clusters of opinion-sharing agents. The behaviour of the model is strongly influenced by this parameter. Threshold values are exogenously given. For values below a certain threshold – 1 in the original formulation - the CB model exhibits the finite-variance, fat-tailed behaviour of short-term returns. Above the threshold, the model shows global aggregation and behaviour of the boom/crash type. At the threshold, return distributions are fat-tailed, with unbounded variance.

Our research builds on the above. In particular, we studied feedback mechanisms that introduce self-organising behaviour in the CB model. The rationale behind the introduction of the feedback mechanism is that while agents tend to aggregate, aggregation is disrupted by large fluctuations in prices.

The feedback mechanism introduces some interesting behaviour of the price process: the return distribution follows approximately a power law, but very large events, such as booms and crashes, also appear. Essentially outliers, these events are naturally explained within the framework of random graph theory.

Both the merits and the limitations of our modelling approach should be noted. Our model takes into account pairwise interactions, but handles neither the intelligent information processing performed by agents nor the interaction of financial markets with the economy at large. In particular, due to the solely random nature of trading decisions, there is no distinction between the boom/crash behaviour of markets. Our model might be considered a component of a realistic market model.

Nevertheless, we believe our model is of interest as it exhibits some critical features of financial markets that can be attributed to pairwise interactions. In particular, it shows how pairwise interactions in a finite market originate rich behaviour characterised by a business-as-usual phase dominated by power law distributions and the sudden appearance of booms or crashes that are outliers. It also shows how critical situations that might lead to crashes might have built up behind a backdrop of normal trading activity. While the dynamics of this process is undoubtedly idealised, we believe its critical features might shed light on the workings of aggregation processes.

Introducing the Cont-Bouchaud model

The Cont-Bouchaud (CB) model is a simple model of herding behaviour. The basic concept is that 1) agents belong to clusters and 2) agents in the same cluster share the same opinions and thus form the same buy, sell, or hold decisions. Clusters themselves are represented as the connected components of a random graph (see Appendix A). At each time period, each cluster buys, sells, or holds with probability a,a,1-a respectively.

The formal description of the CB model (Cont-Bouchaud, 1998) is as follows. Suppose that the market is made up of N agents and that each agent occupies a vertex Vi. Suppose also that each agent has an independent probability p to form a decision-making link with the remaining N-1 agents. Linked agents are assumed to make the same decisions as regards buying or selling securities or refraining from trading.

The market is therefore represented as a random graph, each link between agents being represented by an edge on the graph. Clusters of agents are represented by the connected components of the random graph. The behaviour of the model clearly depends on the size distribution of connected components. It can be shown (Cont-Bouchaud, 1998) that the cluster size distribution follows a truncated power-law distribution with exponent 
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. If S is the random variable that represents cluster size and if the probability that an edge is open or closed is 
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Interpreting this probability requires careful consideration. The sample space of the random graph model considered above is the set of all possible graph configurations. The number Ts of graphs of size S is a random variable defined over this space. It can be demonstrated (Bollobas, 1985) that for values of c(1, the limit of the expected value of Ts when n(( is:

[image: image26.wmf]
The expected value of Ts is proportional to the probability that the size of a cluster chosen at random from a randomly chosen configuration has size S.

As the number, position, and size of clusters vary from configuration to configuration, there is no natural way to trace the size distribution of individual clusters. It is however possible to determine the probability distribution of those cluster that contains a given vertex. It can be shown (see Cont-Bouchaud, 1998) that this probability distribution is again a truncated power law, but the exponent is -( and not –((+1).
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Consider now the stochastic time-evolution of the CB model. The simplest assumption is 1) that the cluster structure is fixed during the time interval under consideration and 2) that the cluster size frequency distribution follows the same truncated power law of the theoretical probability distribution. If the total number of clusters in the large but finite configuration is Nc, the number N(S) of clusters of size S will be approximately

where A is a proportionality constant such that probabilities sum up to one. The exponential decay implies that there is a cut-off length 
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 such that the size S is zero above the cut-off length C. This assumption is reasonable as, in the limit of an infinite random graph, almost every configuration will approximately obey this cluster-size distribution for large clusters. 

At each trading moment, assuming discrete trading intervals, every cluster has the same independent probability a of buying, probability a of selling, and probability 1-2a of refrain from trading. The sole source of randomness that drives the stochastic evolution of the model is therefore given by the independent random choice of the clusters that buy, sell, or refrain from trading. 

Assume, in addition, that the probability of trading a is very small - an assumption that is reasonable given the very large number of traders in the market and the small trading interval under consideration. As all agents in a cluster share the same decisions as regards trading, if Xi is the buy/sell order issued by the ith cluster, Xi will be proportional to the size of the cluster. We can therefore approximate each random variable Xi as an independent draw from a population with a truncated power-law distribution. This assumption is valid only if the number of active trading clusters is small. The stochastic time evolution of the market prices is thus represented by a sequence of independent and identically distributed (iid) variables.

As explained in detail in (Cont-Bouchaud, 1998), the price variation (x is proportional to excess demand and can be written as:
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where Wi is the size of the cluster i, (i is the common individual demand of agents in cluster i, ( is the proportionality constant, and nc is the number of clusters. The price variation can be written as:
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where p(k)(m) is the distribution of the sum of k identical copies of X. The resulting distribution remains a truncated power law as shown in Chowdhury and Stauffer (1998) which extends the work of Cont and Bouchaud.

This simplified analysis is in good agreement with the spirit of the CB model. In fact, the latter views clusters as permanent aggregations of agents, such as mutual funds. This modelling option is implicitly assumed in the model developed by Chowdhury and Stauffer.

Another approach can be taken, assuming two sources of randomness, 1) the cluster configuration and 2) the random choice of clusters that are trading. Under this approach, we can make the assumption that the cluster-size distribution follows the same power-law distribution as in the previous case, but that the number of clusters is variable. It can be shown (see CB) that the cluster-number distribution is approximately normal. We can thus write:
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This approach assumes that, at each trading moment, agent aggregation is completely reshuffled.

Self-organized criticalities

We implement a slightly different approach that involves the assumption that configurations are slowly changing with respect to the trading interval. In the CB model, the value of the parameter c is exogenously given; the type of truncation that the model exhibits depends on this value. Our objective was to identify a reasonable feedback mechanism that would 1) make the parameter c endogenous and 2) keep the system close to the critical point.

Simple feedback mechanisms that keep a system close to its critical point are called self-organised criticality (Bak, Tang, Wiesenfeld 1987). Bak, Tang, and Wiesenfeld illustrated self-organised criticality (SOC) behaviour in the case of an idealised sand pile and argued that such a mechanism could explain the 1/f noise found in many physical systems. The sand pile model is a cellular automata that represents a physical sand pile. It is characterised by laws of movement such that piles of any size can be formed. When the steepness of a pile exceeds a given threshold, the entire pile collapses, producing an avalanche. If grains of sand are randomly added to the system, piles – and consequently avalanches - of any size are formed.

A key property of the sand pile model is that, in two or more dimensions, the size distribution of avalanches follows a power law. The process of randomly adding grains of sand results in a "avalanche process" with power-law distributions. Though only a few SOC models have been exactly solved mathematically, SOC-type models have been used to explain a variety of physical and socio-economic behaviour. Bak, Chen, Scheinkman and Woodford used a SOC model to explain endogenous fluctuations in a model of production and inventory economy.

Going back to the sand pile model, observe first that SOC transforms a white noise input into a 1/f output. More specifically, SOC accepts as input a sequence of random shocks (e.g., the random adding of grains of sand) and produces as output a sequence of avalanches with a power-law distribution. More generally, SOC behaviour can be summarised in two steps:

1. A randomly driven mechanism forms structures (e.g., sand piles) whose size follows a power-law distribution. Important examples of these mechanisms are percolation and random graphs;

2. Structures are destroyed with effects (e.g., avalanches) proportional to the size of structures.

One might ask why the need to introduce a mechanism such as SOC as opposed to simply postulating the existence of power-law distributions and of 1/f noise (or noise of a chromatism other than white). The justification is that, by postulating a single source of randomness and explaining the different stochastic behaviour through simple mechanisms, substantial insight is gained.

The emergence of power-law distributions is explained starting from purely random phenomena, considered, in themselves, a given. Randomness has specific distribution properties and we assume that there are sets of phenomena that are randomly distributed. Simply adding random independent (or weakly dependent) events produces Gaussian distributions while the more complex SOC mechanisms produce fat-tailed distributions.

Because they are produced by the simple summing up of random events, Gaussian distributions are widespread. Fat-tailed, power-law distributions are also frequent, in physical as well as economic phenomena. Because they offer a a very general and simple link between random phenomena and power laws, SOCs are a significant conceptual consolidation.

SOC in financial markets

In the context of our research, SOC behaviour is related to the formation and destruction of opinion-sharing clusters. The general concept is that clusters of linked agents are formed, grow, and are destroyed in function of market-specific events. Because the formation and destruction of clusters takes place around the critical thresholds of the model, we believe that this behaviour can be characterised as SOC.

The key point of departure of SOC models from the classical general-equilibrium stochastic models of financial markets is the role played by pairwise interactions. In classical models, price is the sole coordinator; agents are not subject to pairwise interactions. In the real world of financial markets, however, pairwise interactions exist. It should be noted that other types of interactions are also at work, i.e., field effects in the terminology of Aoki (1996).

What, exactly, do we mean by “pairwise interaction”? Pairwise interaction implies that an agent’s behaviour is subject to modification due to "contact" with another agent. Agents might be seen as multi-stable systems that change state in function of direct (though not necessarily physical) contact with other agents. In this specific case, the decision-making process of each agent is modified by his/her contact with another agent.

As noted by Kirman (1997), the formation of clusters should be attributed to some perceived reward consequent to aggregation, such as the sharing of successful strategies, while the destruction of clusters should be attributed to losses or to the perception of danger. These concepts have a much broader area of applicability than financial markets; the formation and destruction of clusters is an important phenomenon in economics as well as in social systems.

In the case of the CB model, the concept of aggregation by reward cannot be easily applied as there is no identifiable benefit in aggregation. The price model, in fact, has zero mean and the decision rules of agents are modelled as purely random. We therefore assume that aggregation is a primitive phenomenon and postulate that, at each time step, new links are formed. We do not offer motivations for these events, but model the cluster formation process as a process of randomly adding edges to a graph.

In modelling the cluster formation process, we assume that the process starts from scratch, with no links. Clusters are formed by randomly adding edges in a process known as random graph processes (see Bollobas, 1985 and Palmer, 1985). The stochastic process that describes trading is thus driven by two sources of randomness: 1) the adding of links at each time step and 2) the random activation of buy, sell, or hold strategies.

Clusters are destroyed by negative events. As in the CB model, agents do not make an average profit or loss by trading as the price process is centred around zero (or some constant average value); the destruction of clusters can therefore not be related to eventual losses suffered by agents. The important parameter in the model is the size of price changes. We assume that agents are averse to large price fluctuations and that clusters that originate large price fluctuations are dismantled.

Aversion to excessive price changes can be interpreted in two ways: 1) aversion to fluctuations is simply an instance of risk-averse behaviour given that there is no reward for bearing risk - i.e., no associated risk premium - and 2) large price movements indicate a large imbalance between demand and supply. To ensure trading in the case of a large imbalance requires the presence of market-makers to absorb the imbalance. These market-makers would require unlimited wealth as prices might experience consecutive sequences of positive or negative jumps.

In principle, this observation also applies to agents: as the decision to buy or sell is considered purely random with probability a, there is no bound to the sequence of buy decisions that an agent can issue. As a is small, however, the probability of a large number of consecutive buy or sell decisions from the same cluster of agents is negligible. As a consequence, we can assume that agents have limited wealth without modifying the model.

Market-makers, on the other hand, are subject to more severe liquidity problems as single price jumps might be very large and sequences of positive or negative price changes are not so rare. Large price movements, therefore, signal the risk that liquidity might dry up. For these reasons, we postulate that clusters are destroyed when price changes exceed a given threshold. We will now summarise our model.

Presentation of the model

In summarising our model, it should be noted that the model is a highly simplified representation of trading. In particular, it does not take into consideration the intelligent information processing by agents nor the natural tendency of markets to grow and generate profits. The model proposes to represent only those aspects of agent aggregation that are due to random pairwise links between agents. Other aggregation mechanisms are at work in the market, in particular field effects through which agents aggregate in function of some state variables that characterise the market.

We show how, applied to pairwise interactions, SOC generates rich behaviour with many surprising features. In particular, we show how SOC might generate booms or crashes. Pairwise interactions, however, should be coupled with other types of market interactions to arrive at a more faithful representation of the real markets.

The market is made up of N agents. At time zero, the N agents form a graph without edges. As in the CB model, each agent is characterized by a probability a of buying, a probability a of selling, and a probability 1-2a of refraining from trading in any given trading period. All trading periods are assumed equal. At each trading period, a link (edge) is randomly added to the graph, and trading subsequently takes place. Links create clusters of connected vertices. The correlation structure of the model is such that agents in the same cluster share the same trading decisions. After time zero, at each trading moment ti, each cluster issues orders of size equal to the size of the cluster, i.e., the order of the connected component in the graph theory.

The price formation process is the same as in the CB model. Price changes are proportional to the net excess demand as follows:
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The process of acquiring links and of creating larger clusters is a graph random process. When trading produces prices that exceed a given threshold, however, clusters are destroyed by a deterministic process. This results in the isolation of each vertex that belongs to these clusters.

The stochastic price process

The stochastic behaviour of prices hinges on the special properties of random graphs processes (see Appendix A). In particular, Bollobas (1985) described the behaviour of clusters consequent to the adding of links. For the first 
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 time steps, the cluster size distribution follows a truncated power-law distribution. If S is the size of a cluster, we can write:
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Starting from the above formula, it can be shown (Bollobas 1985) that the size of the largest cluster just before 
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 steps is of order logn. All components are trees or uniclic graphs. Distributions at different time steps are independent random draws from a sequence of populations with truncated power-law distributions. We can therefore approximately assume that price changes are independently distributed at each step.[image: image33.wmf](
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Erdos and Reny (1960) discovered that the behaviour of random graphs exhibits a sudden qualitative change at a number of thresholds. At 
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 steps, the size of the largest component jumps to 
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. As shown in (Bollobas 1985), this fact can also be demonstrated starting from the power-law distribution of cluster size that at the threshold c=1 is no longer truncated.

After 
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 time steps, the sequence of connected components begins to exhibit important gaps in the size distribution. Following Bollobas, if S is the size of a component, we call a component small if its size 
[image: image9.wmf]2

3

2

n

S

£

 and large if 
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. A key finding (see Bollobas, 1985 and Palmer, 1985) is that after 
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 steps, there is no component of intermediate size between large and small components. 

In addition, if G(c) is the number of vertices in the largest component of the random graph, it can be shown that G(c) grows as: 
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where:
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Shortly after 
[image: image13.wmf]2
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 steps, there is only one large component (the giant component) that progressively englobes all other components, starting from the biggest. The giant component grows at a speed which is approximately four times the speed at which edges are added.

The behaviour of the random graph process determines the dynamics of the price process. Large component(s) have the same probability of trading as other components. As a consequence, the process of formation of the giant component might go on while trading interests only other, small components. It is only when trading hits the large components that the cluster destruction mechanism is activated.

When trading hits the giant cluster, prices experience a boom/crash jump and the giant cluster is destroyed. The interesting property of this model is that conditions leading to a boom or a crash build up in the background while trading continues.

It should be noted that that booms or crashes are not tail events of a distribution that follows a power law. As remarked above, the power-law distribution governs events at a smaller scale. There is a large gap in the size distribution of clusters, a gap that grows with time. Booms and crashes are truly outliers, with a distribution that is superimposed on the power-law distribution at a lower scale.

If the threshold for cluster destruction is lower than the threshold for the giant cluster, the boom/crash process still shows the basic features of the previous case. The key point is that the probability a is assumed to be small; trading is thus a relatively rare event in the life of each cluster. This is equivalent to saying that clusters refrain from trading at many steps. As a consequence, and given that the process of the formation of large clusters dramatically accelerates after 
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, a giant cluster can be formed even if the threshold for cluster destruction is relatively small.

Simulation results
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We performed simulations for a market of 30,000 agents (i.e., nodes on the graph). We simulated aggregate demand because price fluctuations are assumed to be proportional to aggregate demand. The value of the propbability of trading a is 0.01. We used two largely different threshold levels for cluster disruption: 300 and 3000. The system’s behaviour does not change significantly in the two cases. The following figures show the time evolution of price changes. Price changes exhibit business-as-usual fluctuations interspersed with crashes and booms. The latter events are clearly outliers.

Fig. 1 - Fluctuations of aggregate demand when the threshold = 3000.
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Fig. 2 - Fluctuations of aggregate demand when the threshold = 300.

The following figures show the distribution of aggregate demand for thresholds of 3000 and 300. The log-log graphs clearly show that there are two distinct regimes in the price change distribution. One region is characterised by a power-law distribution as indicated by the straight line of steepness approximately 
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. The other region is that of crashes and booms. The different thresholds do not change the shape of distributions.
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Fig. 3 - Distribution of aggregate demand when the threshold = 3000.
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Fig. 4 - Distribution of aggregate demand when the threshold = 300.

It is interesting to examine the evolution of the number of nodes in the trading clusters and the number clusters as shown in the following figures in the case of threshold 3000 and 300.
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Fig. 5 - Number of nodes in trading clusters when the threshold = 3000.
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Fig. 6 - Number of clusters when the threshold = 3000.
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Fig. 7 - Number of nodes in trading clusters when the threshold = 300.
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Fig. 8 - Number of clusters when the threshold = 300.

The number of nodes in trading clusters grows until the threshold is hit and the largest cluster is dissolved. When the threshold = 3000, the largest cluster reaches a size close to that of the entire market. The evolution in the number of clusters exhibits the behaviour predicted by the theory of random graph processes. The number of clusters initially grows, reaches a maximum, and then decays as the giant cluster progressively englobes all others. Were the process not interrupted by the cluster disruption mechanism at the end of the process, only one giant cluster would remain.

Appendix A: Random graphs

Random graphs can be loosely considered as a model of percolation in infinite dimensions. Random graphs and finite-dimensional percolation models are characterised by critical points (i.e., critical values of some parameters) and threshold functions that mark an abrupt and qualitative change of behaviour. The relevant parameter for both random graphs and finite-dimensional percolation is the probability p that an edge is open or closed.

We are interested in the limit behaviour for n that goes to infinite. It is possible to imagine a sequence of graphs of growing n and the limit distribution as the limit of distributions for n that goes to infinite if this limit exists. The probability threshold is replaced by different threshold functions that prescribe how the probability p grows with the number of vertices.

The critical behaviour of a random graph that is of interest here is the size distribution of the connected components of the graph when 
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 where c is a constant. For values of c<1, the cluster size distribution is a truncated power law that exhibits a correlation length. In other words, there is a cut-off size such that clusters above a given size are exponentially rare. For c=1, the cluster size distribution is a power law such that cluster size distribution is self-similar; clusters do not have an intrinsic size. For c>1, there is only one giant cluster.

We develop our argument using the theory of random graphs, which can be thought of as percolation on infinite-dimensional lattices. Suppose that a finite set of N vertices Vi, i=1,N, is given. A link (or edge) is defined as an unordered pair of vertices (i,j(. A graph is defined by a set of vertices V and by a set of edges E. Each of the N vertices can be connected with an edge to N-1 other nodes. Therefore there are a total of 
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 possible edges.

Suppose that each pair of vertices has a probability p of being connected by an open edge and a probability 1-p of not being connected and that these probabilities are independent. As each edge is randomly open or closed, the corresponding graph is called a random graph. The sample space is the set of all possible configurations. There are 
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 possible edges and thus 
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 configurations. On average, each vertex will be connected to p(N-1) vertices. It is convenient to represent p as: 
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We are interested in the distribution of the size of clusters (i.e., connected components). It can be demonstrated (see Bollobas 1985, chapters IV and V) that for 
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<c<1 most clusters will be trees or will contain at most one cycle. The frequency distribution of cluster sizes tends to a definite limit a.s. (almost surely) when N((. This limit frequency distribution is a Poisson distribution. Computing the expected value of this distribution, it is possible to infer that the probability distribution of S decays as an exponentially truncated power law for large values of S:
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For c=1, the distribution becomes:
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If c=1, the size distribution has an infinite variance in the limit of an infinite cluster while for c<1, the size distribution has a finite variance. For c(1, a giant cluster is formed in the limit of infinite N.

F(S) has an ensemble probability interpretation as the probability distribution of the size of a randomly chosen cluster. The following figures illustrates the cluster size distribution obtained through simulation of a network of 30,000 vertices with c=1 and c=0.5.
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Fig. 9 - Cluster size distribution in the case c=1. The power-law distribution with exponent 
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 of the cluster size is evident in the log-log plot.
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Fig. 10 - Cluster size distribution in the case c=0.5. The distribution follows the same power law with exponent 
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 but is exponentially truncated.

The size distribution of open clusters is discrete, follows a power law for large cluster sizes, and is not defined at zero. There is a class of continuous probability distributions characterised by a power-law decay and defined at the origin: these are stable laws (see Samorodnitsky and Taqqu, 1994, for a definition).
Stable laws are characterised by four parameters: 
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. The first parameter, (, is the characteristic index of the distribution. The tail distribution of any stable variable P(x>() decays as a power law with exponent -. This implies that the relative probability generating function decays with exponent –(+1). The second parameter, , is the skewness parameter. Where =+/-1, the distribution is totally skewed to the right or to the left. If <1 and =+/-1, the support of the distribution is the half real line. The third parameter, , is a scale parameter, and the last one is the shift parameter. If 1<2, the shift parameter ( is the mean of the distribution.

A linear combination of independent stable laws with index ( has the same index (. The tail distribution of a linear combination of independent and identical stable laws X decays with the same power-law distribution of X. Probability distributions that exhibit power-law decay but that are not stable laws do not have the latter’s nice mathematical properties. It can be shown however (see Chowdhury and Stauffer, 1998) that the sum of two or more laws that decay asymptotically as 
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 is a variable that decays asymptotically with the same exponent -((+1). This property, which plays an important role in our model, will be restated in the context of discrete cluster size distributions.
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