
co
nd

-m
at

/9
90

50
50

 v
2 

  6
 M

ay
 1

99
9

On the possibility of optimal investment
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e-mail: slanina@fzu.cz

We analyze the theory of optimal investment in risky assets, developed recently by Marsili, Maslov
and Zhang [Physica A 253 (1998) 403]. When the real data are used instead of abstract stochastic
process, it appears that a non-trivial investment strategy is rarely possible. We show that non-zero
transaction costs make the applicability of the method even more difficult. We generalize the method
in order to take into account possible correlations in the asset price.
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I. INTRODUCTION

Non-equilibrium statistical mechanics, especially the
theory of stochastic processes, finds recently wide appli-
cability in economics. First area, intensively studied in
the last several years, is the phenomenology of the signal
(price, production, and other economic variables) mea-
sured on the economics system [1–8]. Scaling concepts
proved to be a very useful tool for such analysis.

Second area concerns optimization. In the competitive
economics, agents should maximize their survival proba-
bility by balancing several requirements, often mutually
exclusive, like profit and risk [9–13]. Third area com-
prises creation of models which should grasp particular
features of the behavior of real economics, like price fluc-
tuations [14–19].

We focus here on an aspect of optimization, discussed
recently by Marsili, Maslov and Zhang [20]. In a sim-
plified version of the economy, there are two possibilities
where to put a cash: to buy either a risky asset (we shall
call it stock, but it can be any kind of asset) or a risk-
less asset (deposit in a bank). In the latter case we are
sure to gain each year a fixed amount, according to the
interest rate. On the contrary, putting the money en-
tirely to the stock is risky, but the gain may be larger
(sometimes quite substantially). We may imagine, that
increasing our degrees of freedom by putting a specified
portion of our capital into the stock and the rest to the
bank may lead to increased growth of our wealth. This
way was first studied by Kelly and followers [21,22] and
intensively re-investigated recently [20,23–27].

The point of the Kelly’s approach is, that if we sup-
pose that the stock price performs a multiplicative pro-
cess [28–31], the quantity to maximize is not the average
value of the capital, but the typical value, which may
be substantially different, if the process is dominated by
rare big events. It was found that given the probability
distribution of the stock price changes, there is a unique
optimal value of the fraction of the investor’s capital put
into the stock.

The purpose of the present work is to investigate the

practical applicability of the strategy suggested in [20,23].
Let us first briefly summarize this approach. We suppose
that the price pt of the stock changes from time t to t+1
according to a simple multiplicative process

pt+1 = pt eηt (1)

where ηt for different t are independent and equally dis-
tributed random variables. The angle brackets <> will
denote average over these variables.

We denote Wt the total capital of the investor at the
moment t. The fraction r of the capital is stored in stock
and the rest is deposited in a bank. We will call the
number r investment ratio. The interest rate provided
by the bank is supposed to be fixed and equal to ρ per
one time unit. The strategy of the investor consists in
keeping the investment ratio constant. It means, that
he/she sells certain amount of stock every time the stock
price rose and sell when the price went down.

If we suppose that the investor updates its portfolio
(i. e. buys or sells some stock in order to keep the in-
vestment ratio constant) at each time step, then starting
from the capital W0, after N time steps the investor owns

WN =
N−1∏
t=0

(1 + ρ+ r(eηt − 1− ρ))W0 . (2)

The formula can be simply generalized to the situation
when there is a non-zero transaction cost equal to γ (see
also [27]) and the update of the portfolio is done each M
time steps. We assume for simplicity that N is a multiple
of M .

WN =
N/M−1∏
t=0

(1 + ρ)M + r(eη̄Mt (1 +G)− (1 + ρ)M )
1 + rG

W0

(3)

where we denoted η̄Mt =
∑Mt+M−1
i=Mt ηi and G =

γ sign(M ln(1 + ρ) − η̄Mt) .
We can see that like the stock price itself, the capital

performs a multiplicative process.
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Wt+1 = et(r)Wt (4)

where the random variables et(r) depend on the invest-
ment ratio as a parameter.

For N sufficiently large the typical growth of the cap-
ital (Wt+1/Wt)typical is not equal to the mean < e(r) >
as one would naively expect, but is given by the median
[20], which in this case gives

g(r) = log((Wt+1/Wt)typical) =< log e(r) > . (5)

Therefore we look for the maximum of g as a function
of r, which in the simplest case without transaction costs
leads to the equation

<
eη − 1− ρ

1 + ρ+ ropt(eη − 1− ρ) >= 0 . (6)

for the optimum strategy ropt. If the solution falls outside
the interval [0, 1], one of the boundary points is the true
optimum, based on the following conditions. If g′(0) < 0
the optimum is ropt = 0. If g′(1) > 0 the optimum is
ropt = 1.

If η is a random variable with probability density

P (η) =
1
2

(δ(η −m− d) + δ(η −m+ d)) (7)

the solution of (6) is straightforward:

ropt =
1
2

(
1 + ρ

1 + ρ− em+d
+

1 + ρ

1 + ρ− em−d

)
. (8)

In more complicated cases we need to solve the equa-
tion (6) numerically. However, for small mean and vari-
ance of η approximative analytical formulae are fairly
accurate [23,24]. We found, that equally good approx-
imation is obtained, if we set m =< η > and d =√
< η2 > − < η >2 in the Eq. 8.
In the next section we investigate the method with real

data. Section III shows the influence of the transaction
costs. In Sec. IV a generalization of the method for the
case of time-correlated price is shown. Finally, in Sec. V
we discuss the obtained results.

II. TWO-TIME OPTIMAL STRATEGIES

In the previous section we supposed the following pro-
cedure: the investor takes the stock price data and ex-
tracts some statistical information from them. This infor-
mation is then plugged into theoretical machinery, which
returns the suggested number r. However, we may also
follow different path, which should be in principle equiv-
alent, but in practice it looks different.

Namely, suppose we observe the past evolution of the
stock price during some period starting at time t1 and
finishing at time t2 (most probably it will be the present

moment, but not necessarily). Then, we imagine that
at time t1 an investor started with capital Wt1 = 1 and
during that period followed the strategy determined by
certain value of r. We compute his/her capital Wt2(r)
at final time and find the maximum of the final capital
Wt2(r) with respect to r. We call the value ropt maximiz-
ing the final capital two-time optimal strategy. Optimum
strategy in the past can be then used as predicted opti-
mal strategy for the future.
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FIG. 1. Time evolution of the NYSE composite index.
Time is measured in working days from t = 0 which is 2
January 1990 to t = 2181, which is 31 December 1998. The
vertical axis is in logarithmic scale.

The capital at time t2 is again

Wt2(r) =
t2−1∏
t=t1

(1 + ρ+ r(eηt − 1− ρ)) (9)

and its maximization with respect to r leads to equation

g′(ropt) =
t2−1∑
t=t1

eηt − 1− ρ
1 + ρ+ ropt(eηt − 1− ρ) = 0 (10)

which gives the optimal investment ratio ropt(t1, t2) as a
function of initial time t1 and final time t2. Note that it
is an analog of the equation (6) but we deal with time
averages here, not with sample averages as before. This is
also another justification of the procedure of maximizing
< log(Wt+1/Wt) > instead of < Wt+1/Wt >.

For comparison with reality we took the daily values
of the New York Stock Exchange (NYSE) composite in-
dex. The time is measured in working days. The period
studied started on 2 January 1990 (t = 0) and finished
on 31 December 1998 (t = 2181). The time evolution of
the index x(t) is shown in Fig. 1. The values of η are
determined by exp(ηt) = x(t+ 1)/x(t).

The data of NYSE composite index were analyzed by
calculating the two-time optimal strategies ropt(t1, t2).
As a typical example of the behavior observed, for ini-
tial time t1 = 300 we vary the final time t2 up to 2180.
We used the interest rate 6.5% per 250 days (a realistic
value for approximately 1 year). In this case we neglect
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the transaction costs, γ = 0. The influence of non-zero
transaction costs will be investigated in Sec. III. The re-
sults are in Fig. 2(a). We investigated also the possibility
that the investment ratio goes beyond the limits 0 and 1,
which means that the investor borrows either money or
stock. We imposed the interest rate 8% on the loans and
calculated again the optimal r. The results are in Fig.
2(c). We can see several far-reaching excursions above
1 and some also below 0, which indicates that quite of-
ten the optimal strategy requires borrowing considerable
amount of money or stock.
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FIG. 2. The two-time optimal investment ratio for interest
rate 6.5% per 250 days. The initial time is 300. The trans-
action costs are γ = 0 (a) and γ = 0.005 (b). In (c), loans
are allowed with interest rate 8% per 250 days, transactions
costs are γ = 0.

An important conclusion may be drawn from the re-
sults obtained: the optimal strategy ropt(t1, t2) as a func-
tion of the final time t2 does not follow any smooth tra-
jectory. On the contrary, the dependence is extremely
noisy, as can be seen very well in the Fig. 2. Moreover,
the strategy is very sensitive to initial conditions. If we
compare the strategy ropt(t1, t2) and ropt(t1 + ∆t, t2) for
slightly different initial time, big differences are found in
regions, where the strategy is non-trivial (0 < ropt < 1).
In Fig. 3 we show for ∆t = 1 the average difference in
optimal strategy

∆ropt(t) = 〈|ropt(t1, t1 + t) − ropt(t1 + 1, t1 + t)|〉 (11)

where the average is taken over all initial times t1 with
the constraint, that we take into account only the points
where both optimal strategies ropt(t1, t1+t) and ropt(t1+
1, t1 + t) are non-trivial.
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FIG. 3. Average difference in optimal strategy when the
initial times differ by 1 day. Only points where the strategies
are non-trivial are taken into account.

Due to poor statistics, the data are not very smooth.
We can also observe apparent two branches of the depen-
dece, which is caused by superimposing data from differ-
ent portions of the time evolution of the index. However,
despite of the poor quality of the data, we can conclude,
that even after a period as long as 1000 days (approx-
imately 4 years) the difference of 1 day in the starting
time leads to difference in optimal strategy as large as
about 0.2. This finding challenges the reliability of the
investment strategy based on finding optimal investment
ratio r.

Moreover, we can see that if loans are prohibited, there
are long periods where the optimal strategy is trivial
(ropt = 0 or ropt = 1). We investigated the whole his-
tory of the NYSE composite index shown in Fig. 1 and
determined, for which pairs (t1, t2) the optimal strategy
ropt(t1, t2) is non-trivial. In the Fig. 4 each dot repre-
sents such pair. (In fact, not every point was checked:
the grid 5 × 5 was used, i. e. only such times which are
multiples of 5 were investigated.)

We can observe large empty regions, which indicate ab-
sence of a non-trivial investment. In order to understand
the origin of such empty spaces, let us consider a simple
model. Suppose we have the random variable distributed
according to (7), and ρ = 0. Then the conditions for the
existence of non-trivial optimal strategy between t1 = 0
and t2 = N are

g′(0) =
N−1∑
t=0

(eηt − 1) > 0 (12)

and

g′(1) =
N−1∑
t=0

(1− e−ηt) < 0 . (13)
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FIG. 4. Existence of non-trivial strategies: each dot rep-

resents starting and final time between which a non-trivial
optimal strategy is found.

Let us compute the probability pnt that both of these
conditions are satisfied. We have

g′(0) = N(em cosh d− 1) + em sinh d
N−1∑
t=0

zt (14)

and

g′(1) = N(1− e−m cosh d) + e−m sinh d
N−1∑
t=0

zt (15)

where z’s can have values +1 or -1 with probability 1/2.
The sum

∑N−1
t=0 zt has binomial distribution, and for

large N we can write

pnt =
∫ √N(cothd−em/ sinh d)

−
√
N(cothd−e−m/ sinh d)

dζ√
2π

exp(−ζ
2

2
) . (16)

We can see immediately that pnt has a value close to
1 for the number of time steps at least

N ' d−2 . (17)

For the data in Fig. 1 we found d ' 0.01, which means
N ' 10000 days, or 40 years. This is thus an estimate
of how long we need to observe the stock price before
a reliable strategy can be fixed. However, during such a
long period the market changes substantially many times.
That is why no simple strategy of the kind investigated
here can lead to sure profit.

III. TRANSACTION COSTS

We investigated the influence of the transaction costs
γ and time lag M between transactions. We found nearly
no dependence on M , but the dependence on γ is rather
strong. It can be qualitatively seen in Fig. 2(b). When
we compare the optimal strategy for γ = 0 and γ = 0.005,
we can see, that already transaction costs 0.5% decrease

substantially the fraction of time when the strategy is
non-trivial. We investigated the dependence of the frac-
tion fnontrivial of time pairs (t1, t2) between which a non-
trivial strategy exists on the transaction costs. We have
found that it decreases with γ and reaches negligible
value for γ ≥ 0.006. This behavior is shown in Fig. 5.
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FIG. 5. The dependence of the fraction of time pairs, be-
tween which a non-trivial investment optimal strategy exists,
on the transaction cost. The time interval investigated is from
time 0 to time 1600.

The explanation of this behavior lies in the fact, that
the transaction costs introduce some friction in the mar-
ket, which means that large changes of the investment
ratio are suppressed. Because the investment ration is
mostly 0 or 1 even for γ = 0, this implies that changing r
from 0 or 1 to a non-trivial value is even harder for γ > 0
and a non-trivial investment becomes nearly impossible
for large transaction costs.

IV. INVESTMENT IN PRESENCE OF
CORRELATIONS

In order to improve the strategy based only on the
knowledge of the distribution of η, we would like to in-
vestigate a possible profit taken from the short-time cor-
relations.

Imagine again the simplest case, when η can have only
two values, η+ = m+d and η− = m−d. However, now ηt
and ηt−1 may be correlated and we suppose the following
probability distribution P (ηt−1, ηt) = 1/4+c if ηt−1 = ηt
and P (ηt−1, ηt) = 1/4− c if ηt−1 6= ηt. The parameter c
quantifies the short-time correlations.

At time t the strategy r(ηt−1) should depend on the
value of η in the previous step. In our simplified situation
we have only two possibilities, r+ = r(η+) and r− =
r(η−). The problem then reduces to maximization of the
typical gain

g(r+, r−) =< ln(1 + ρ+ r(ηt−1)(eηt − 1− ρ)) > (18)

which leads to decoupled equations for r+
opt and r−opt
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∂g(r+
opt, r

−
opt)

∂r+
= (1

4 + c) em+d−1−ρ
1+ρ+r+opt(em+d−1−ρ) + (19)

(1
4 − c)

em−d−1−ρ
1+ρ+r+opt(em−d−1−ρ) = 0 (20)

∂g(r+
opt, r

−
opt)

∂r−
= (1

4 + c) em−d−1−ρ
1+ρ+r−opt(em−d−1−ρ) + (21)

(1
4
− c) em+d−1−ρ

1+ρ+r−opt(em+d−1−ρ) = 0 . (22)

The solution is a straightforward generalization of Eq.
(7).

The above procedure works equally well even in the
case of more complicated time correlations. For example
we may imagine that the price evolution is positively cor-
related over two time steps, i. e. Prob(ηt−2 = ηt) > 1/2,
while Prob(ηt−1 = ηt) = 1/2. Generally, we have some
joint probability distribution for the past and present
P (η<, η), where we denote η< = [..., ηt−3, ηt−2, ηt−1] and
η = ηt. The typical gain becomes a functional depending
on the strategy r(η<) which itself depends on the past
price history.

However, maximizing this functional by looking for its
stationary point leads to very simple set of decoupled
equations for the strategies∫

dη P (η<, η)
eη − 1− ρ

1 + ρ+ ropt(η<)(eη − 1− ρ) = 0 . (23)

In the simplest case, when we assume that the strategy
depends only on the sign of η in the previous step, we per-
formed the analysis on the NYSE composite index shown
in the Fig. 1. We found optimal pairs [r+

opt, r
−
opt]. Con-

trary to the case when correlations were not taken into
account, no non-trivial investment strategy was found.
So, instead to improve the method of Ref. [20], the ap-
plicability of this method is further discredited.

V. CONCLUSIONS

We investigated the method of finding the optimal
investment strategy based on the Kelly criterion. We
checked the method on real data based on the time evo-
lution of the New York Stock Exchange composite index.
We found, that it is rarely possible to find an optimal
strategy which would be stable at least for a short pe-
riod of time. There are several reasons, which discredit
the method based on the Kelly criterion. First, the op-
timal investment ratio fluctuates very rapidly in time.
Second, it depends strongly on the time, when the in-
vestment strategy started to be applied. The difference
of 1 day in the starting moment makes substantial differ-
ence even after 1000 days of investment. Third, the frac-
tion of days, for which a non-trivial investment strategy
is possible, is very low. This fraction also decreases with

transaction costs and reaches negligible values for trans-
action costs about 0.6%. Taking into account possible
correlations in the time evolution of the index makes the
situation even less favorable, reducing further the frac-
tion of times, when a non-trivial investment is possible.

We conclude, that straightforward application of the
investment strategy based on the Kelly criterion would
be very difficult in real conditions. The question re-
mains, whether there are other optimization schemes,
which would lead to more certain investment strategies.
It would be also interesting to apply the approach used in
this paper in order to check the reliability of the option-
pricing strategies.
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