Important note: Do NOT send email to the cs.cf.ac.uk address above: it will

 be ignored. Corrections and other correspondence should be sent to

 david.beasley@iee.org

 The

 Hitch-Hiker's

 Guide to

 Evolutionary Computation

 (FAQ for comp.ai.genetic)

 edited by

 Joerg Heitkoetter

 UUnet Deutschland GmbH

 Emil-Figge-Str. 80

 D-44227 Dortmund, Germany

 <joke@de.uu.net>

 or <joke@santafe.edu>

 and

 David Beasley

 ingenta ltd

BUCS Building,

 University of Bath,

 Bath, United Kingdom BA2 7AY

 <david.beasley@iee.org>

 PLEASE:

 Search this document first if you have a question

 and

 If someone posts a question to the newsgroup which is answered in here

 DON'T POST THE ANSWER TO THE NEWSGROUP:

 POINT THE ASKER TO THIS FAQ

 and finally

 DON'T PANIC!

 Copyright (c) 1993-1999 by Joerg Heitkoetter and David Beasley, all

 rights reserved.

 This FAQ may be posted to any USENET newsgroup, on-line service, or

 BBS as long as it is posted in its entirety and includes this

 copyright statement. This FAQ may not be distributed for financial

 gain. This FAQ may not be included in commercial collections or

 compilations without express permission from the author.

 FAQ /F-A-Q/ or /fak/ [USENET] n. 1. A Frequently Asked Question.

 2. A compendium of accumulated lore, posted periodically to

 high-volume newsgroups in an attempt to forestall such

 questions. Some people prefer the term `FAQ list' or `FAQL'

 /fa'kl/, reserving `FAQ' for sense 1.

 RTFAQ

 /R-T-F-A-Q/ [USENET: primarily written, by analogy with RTFM]

 imp. Abbrev. for `Read the FAQ!', an exhortation that the person

 addressed ought to read the newsgroup's FAQ list before posting

 questions.

 RTFM /R-T-F-M/ [UNIX] imp. Acronym for `Read The Fucking Manual'. 1.

 Used by gurus to brush off questions they consider trivial or

 annoying. Compare Don't do that, then! 2. Used when reporting

 a problem to indicate that you aren't just asking out of

 randomness. "No, I can't figure out how to interface UNIX to my

 toaster, and yes, I have RTFM." Unlike sense 1, this use is

 considered polite. ...

 --- "The on-line hacker Jargon File, version 3.0, 29 July

 1993"

PREFACE

 This guide is intended to help, provide basic information, and serve

 as a first straw for individuals, i.e. uninitiated hitch-hikers, who

 are stranded in the mindboggling universe of Evolutionary Computation

 (EC); that in turn is only a small footpath to an even more

 mindboggling scientific universe, that, incorporating Fuzzy Systems,

 and Artificial Neural Networks, is sometimes referred to as

 Computational Intelligence (CI); that in turn is only part of an even

 more advanced scientific universe of mindparalysing complexity, that

 incorporating Artificial Life, Fractal Geometry, and other Complex

 Systems Sciences might someday be referred to as Natural Computation

 (NC).

 Over the course of the past years, GLOBAL OPTIMIZATION algorithms

 imitating certain principles of nature have proved their usefulness

 in various domains of applications. Especially worth copying are

 those principles where nature has found "stable islands" in a

 "turbulent ocean" of solution possibilities. Such phenomena can be

 found in annealing processes, central nervous systems and biological

 EVOLUTION, which in turn have lead to the following OPTIMIZATION

 methods: Simulated Annealing (SA), Artificial Neural Networks (ANNs)

 and the field of Evolutionary Computation (EC).

 EC may currently be characterized by the following pathways: Genetic

 Algorithms (GA), Evolutionary Programming (EP), Evolution Strategies

 (ES), Classifier Systems (CFS), Genetic Programming (GP), and several

 other problem solving strategies, that are based upon biological

 observations, that date back to Charles Darwin's discoveries in the

 19th century: the means of natural selection and the survival of the

 fittest, and theories of evolution. The inspired algorithms are thus

 termed Evolutionary Algorithms (EA).

 Moreover, this guide is intended to help those who are just beginning

 to read the comp.ai.genetic newsgroup, and those who are new "on"

 USENET. It shall help to avoid lengthy discussions of questions that

 usually arise for beginners of one or the other kind, and which are

 boring to read again and again by comp.ai.genetic "old-timers."

 You will see this guide popping up periodically in the Usenet

 newsgroup comp.ai.genetic (and also comp.answers , and news.answers ,

 where it should be locatable at any time).

ORIGIN

 This guide was produced by Joerg Heitkoetter (known as Joke) in early

 1993, using material from many sources (see Acknowledgements), mixed

 with his own brand of humour. Towards the end of 1993, Joerg handed

 over editorial responsibility to David Beasley . He reorganised the

 guide in various ways, and generally attempted to inject his own

 brand of orderliness. Thus, any jokes are the work of Joke. The

 mundane bits are David's responsibility.

 The guide is kept up to date, as far as possible, and new versions

 are issued several times a year. However, we do rely on useful

 information being sent to us for inclusion in the guide (we dont

 always have time to read comp.ai.genetic , for example).

 Contributions, additions, corrections, cash, etc. are therefore

 always welcome. Send e-mail to the address at the beginning of the

 guide.

DISCLAIMER

 This periodic posting is not meant to discuss any topic exhaustively,

 but should be thought of as a list of reference pointers, instead.

 This posting is provided on an "as is" basis, NO WARRANTY whatsoever

 is expressed or implied, especially, NO WARRANTY that the information

 contained herein is up-to-date, correct or useful in any way,

 although all this is intended.

 Moreover, please note that the opinions expressed herein do not

 necessarily reflect those of the editors' institutions or employers,

 neither as a whole, nor in part. They are just the amalgamation of

 the editors' collections of ideas, and contributions gleaned from

 other sources.

 NOTE: some portions of this otherwise rather dry guide are intended

 to be satirical. If you do not recognize it as such, consult your

 local doctor or a professional comedian.

HOW TO USE THIS GUIDE

 HITCH-HIKING THE FAQNIVERSE

 This guide is big. Really big. You just won't believe how hugely,

 vastly, mindbogglingly big it is. That's why it has been split into a

 "trilogy" -- which, like all successful trilogies, eventually ends up

 consisting of more than three parts.

 Searching for answers

 To find the answer of question number x, just search for the string

 "Qx:". (So the answer to question 42 is at "Q42:"!)

 What does [xxxx99] mean?

 Some books are referenced again and again, that's why they have this

 kind of "tag", that an experienced hitch-hiker will search for in the

 list of books (see Q10 and Q12 and other places) to dissolve the

 riddle. Here, they have a ":" appended, thus you can search for the

 string "[ICGA85]:" for example.

 Why all this UPPERCASING in running text?

 Words written in all uppercase letters are cross-references to

 entries in the Glossary (see Q99). Again, they have a ":" appended,

 thus if you find, say EVOLUTION, you can search for the string

 "EVOLUTION:" in the Glossary.

 FTP and HTTP naming conventions

 A file available on an FTP server will be specified as: <ftp-site-

 name>/<the-complete-filename> So for example, the file bar.tar.gz in

 the directory /pub/foo on the ftp server ftp.certain.site would be

 specified as: ftp.certain.site/pub/foo/bar.tar.gz

 A specification ending with a "/" is a reference to a whole

 directory, e.g. ftp.certain.site/pub/foo/

 HTTP files are specified in a similar way, but with the prefix:

 http://

WHERE TO FIND THIS GUIDE

 Between postings to comp.ai.genetic , this FAQ is available on the

 World Wide Web. Get it from any ENCORE site (See Q15.3). The

 following Encore sites can be accessed by HTTP. If you use the one

 closest to you, you should get the best speed of service.

 o The Chinese University of Hong Kong (China):

http://www.cs.cuhk.hk/pub/EC/FAQ/www/top.htm

o Ecole Polytechnique (France):

http://www.eark.polytechnique.fr/EC/FAQ/www/top.htm

o UUnet Deutschland GmbH (Germany):

http://surf.de.uu.net/encore/www/

o The University of Girona (Spain)

http://gnomics.udg.es/~encore/www/top.htm

o The University of Granada (Spain):

http://krypton.ugr.es/~encore/www/

o The University of Oviedo (Spain):

http://www.etsimo.uniovi.es/ftp/pub/EC/FAQ/www/

o The University of Birmingham (UK)

http://www.cs.bham.ac.uk/Mirrors/ftp.de.uu.net/EC/clife/www/

o The Santa Fe Institute (USA):

http://alife.santafe.edu/~joke/encore/www/

o Purdue University, West Lafayette, IN (USA):

http://www.cs.purdue.edu/coast/archive/clife/FAQ/www/top.htm

 Other Encore sites can be accessed by FTP, and the FAQ can be found

 in the file FAQ/www/top.htm or something similar. The FAQ is also

 available in plain text format on Encore, and from

 rtfm.mit.edu/pub/usenet/news.answers/ai-faq/genetic/ as the files:

 part1 to part6. The FAQ may also be retrieved by e-mail from <mail-

 server@rtfm.mit.edu>. Send a message to the mail-server with "help"

 and "index" in the body on separate lines for more information.

 A PostScript version is also available. This looks really crisp

 (using boldface, italics, etc.), and is available for those who

 prefer offline reading. Get it from Encore in file FAQ/hhgtec.ps.gz

 (the plain text versions are in the same directory too).

 "As a net is made up of a series of ties, so everything in this

 world is connected by a series of ties. If anyone thinks that the

 mesh of a net is an independent, isolated thing, he is mistaken. It

 is called a net because it is made up of a series of interconnected

 meshes, and each mesh has its place and

 responsibility in relation to other meshes."

--- Buddha

 Referencing this Guide

 If you want to reference this guide it should look like:

 Heitkoetter, Joerg and Beasley, David, eds. (1999) "The Hitch-

 Hiker's Guide to Evolutionary Computation: A list of Frequently Asked

 Questions (FAQ)", USENET: comp.ai.genetic. Available via anonymous

 FTP from rtfm.mit.edu/pub/usenet/news.answers/ai-faq/genetic/ About

 110 pages.

 Or simply call it "the Guide", or "HHGTEC" for acronymaniacs.

The ZEN Puzzle

 For some weird reason this guide contains some puzzles which can only

 be solved by cautious readers who have (1) a certain amount of a

 certain kind of humor, (2) a certain amount of patience and time, (3)

 a certain amount of experience in ZEN NAVIGATION, and (4) a certain

 amount of books of a certain author.

 Usually, puzzles search either for certain answers (more often, ONE

 answer) to a question; or, for the real smartasses, sometimes an

 answer is presented, and a certain question is searched for. ZEN

 puzzles are even more challenging: you have to come up with an answer

 to a question, both of which are not explicitly, rather implicitly

 stated somewhere in this FAQ. Thus, you are expected to give an

 answer AND a question!

 To give an impression what this is all about, consider the following,

 submitted by Craig W. Reynolds. The correct question is: "Why is

 Fisher's `improbability quote' (cf EPILOGUE) included in this FAQ?",

 Craig's correct answer is: `This is a GREAT quotation, it sounds like

 something directly out of a turn of the century Douglas Adams:

 Natural Selection:

 the original "Infinite Improbability Drive"' Got the message? Well,

 this was easy and very obvious. The other puzzles are more

 challenging...

 However, all this is just for fun (mine and hopefully yours), there

 is nothing like the $100 price, some big shots in computer science,

 e.g. Don Knuth usually offer; all there is but a honorable

 mentioning of the ZEN navigator, including the puzzle s/he solved.

 It's thus like in real life: don't expect to make money from your

 time being a scientist, it's all just for the fun of it...

 Enjoy the trip!

6Part 1

Subject: Q0: How about an introduction to comp.ai.genetic?
6
Part 2
9
Subject: Q1: What are Evolutionary Algorithms (EAs)?
9
Subject: Q1.1: What's a Genetic Algorithm (GA)?
11
Subject: Q1.2: What's Evolutionary Programming (EP)?
12
Subject: Q1.3: What's an Evolution Strategy (ES)?
15
Subject: Q1.4: What's a Classifier System (CFS)?
19
Subject: Q1.5: What's Genetic Programming (GP)?
25
Part 3
26
Subject: Q2: What applications of EAs are there?
26
Subject: Q3: Who is concerned with EAs?
34
Subject: Q4: How many EAs exist? Which?
36
Subject: Q4.1: What about Alife systems, like Tierra and VENUS?
37
Subject: Q5: What about all this Optimization stuff?
40
Part 4
43
Subject: Q10: What introductory material on EAs is there?
43
Subject: Q10.1: Suitable background reading for beginners?
43
Subject: Q10.2: Textbooks on EC?
43
Subject: Q10.3: The Classics?
44
Subject: Q10.4: Introductory Journal Articles?
45
Subject: Q10.5: Introductory Technical Reports?
46
Subject: Q10.6: Not-quite-so-introductory Literature?
47
Subject: Q10.7: Biological Background Readings?
48
Subject: Q10.8: On-line bibliography collections?
49
Subject: Q10.9: Videos?
51
Subject: Q10.10: CD-ROMs?
51
Subject: Q10.11: How do I get a copy of a dissertation?
52
Subject: Q11: What EC related journals and magazines are there?
52
Subject: Q12: What are the important conferences/proceedings on EC?
55
Subject: Q13: What Evolutionary Computation Associations exist?
58
Subject: Q14: What Technical Reports are available?
59
Subject: Q15: What information is available over the net?
60
Subject: Q15.1: What digests are there?
60
Subject: Q15.2: What mailing lists are there?
61
Subject: Q15.3: What online information repositories are there?
62
Subject: Q15.4: What relevant newsgroups and FAQs are there?
66
Subject: Q15.5: What about all these Internet Services?
67
Part 5
68
Subject: Q20: What EA software packages are available?
68
Subject: Q20.1: Free software packages?
73
Subject: Q20.2: Commercial software packages?
90
Subject: Q20.3: Current research projects?
96
Subject: Q21: What are Gray codes, and why are they used?
98
Subject: Q22: What test data is available?
100
Subject: Q42: What is Life all about?
102
Subject: Q42b: Is there a FAQ to this group?
102
Subject: Q98: Are there any patents on EAs?
102
Subject: Q99: A Glossary on EAs?
103

--

Archive-name: ai-faq/genetic/part1

Last-Modified: 4/1/99

Issue: 7.1

Part 1

Subject: Q0: How about an introduction to comp.ai.genetic?

Certainly. See below.

What is comp.ai.genetic all about?

 The newsgroup comp.ai.genetic is intended as a forum for people who

 want to use or explore the capabilities of Genetic Algorithms (GA),

 Evolutionary Programming (EP), Evolution Strategies (ES), Classifier

 Systems (CFS), Genetic Programming (GP), and some other, less well-

 known problem solving algorithms that are more or less loosely

 coupled to the field of Evolutionary Computation (EC).

How do I get started? What about USENET documentation?

 The following guidelines present the essentials of the USENET online

 documentation, that is posted each month to news.announce.newusers

 If you are already familiar with "netiquette" you can skip to the end

 of this answer; if you don't know what the hell this is all about,

 proceed as follows: (1) carefully read the following paragraphs, (2)

 read all the documents in news.announce.newusers before posting any

 article to USENET. At least you should give the introductory stuff a

 try, i.e. files "news-answers/introduction" and "news-answers/news-

 newusers-intro". Both are survey articles, that provide a short and

 easy way to get an overview of the interesting parts of the online

 docs, and thus can help to prevent you from drowning in the megabytes

 to read. Both can be received either by subscribing to news.answers ,

 or sending the following message to <mail-server@rtfm.mit.edu>:

 send usenet/news.answers/introduction

 send usenet/news.answers/news-newusers-intro

 quit

Netiquette

 "Usenet is a convention, in every sense of the word."

 Although USENET is usually characterized as "an anarchy, with no laws

 and no one in charge" there have "emerged" several rules over the

 past years that shall facilitate life within newsgroups. Thus, you

 will probably find the following types of articles:

 1. Requests

 Requests are articles of the form "I am looking for X" where X is

 something public like a book, an article, a piece of software.

 If multiple different answers can be expected, the person making the

 request should prepare to make a summary of the answers he/she got

 and announce to do so with a phrase like "Please e-mail, I'll

 summarize" at the end of the posting.

 The Subject line of the posting should then be something like

 "Request: X"

 2. Questions

 As opposed to requests, questions are concerned with something so

 specific that general interest cannot readily be assumed. If the

 poster thinks that the topic is of some general interest, he/she

 should announce a summary (see above).

 The Subject line of the posting should be something like "Question:

 this-and-that" (Q: this-and-that) or have the form of a question

 (i.e., end with a question mark)

 3. Answers

 These are reactions to questions or requests. As a rule of thumb

 articles of type "answer" should be rare. Ideally, in most cases

 either the answer is too specific to be of general interest (and

 should thus be e-mailed to the poster) or a summary was announced

 with the question or request (and answers should thus be e-mailed to

 the poster).

 The subject lines of answers are automatically adjusted by the news

 software.

 4. Summaries

 In all cases of requests or questions the answers for which can be

 assumed to be of some general interest, the poster of the request or

 question shall summarize the answers he/she received. Such a summary

 should be announced in the original posting of the question or

 request with a phrase like "Please answer by e-mail, I'll summarize"

 In such a case answers should NOT be posted to the newsgroup but

 instead be mailed to the poster who collects and reviews them. After

 about 10 to 20 days from the original posting, its poster should make

 the summary of answers and post it to the net.

 Some care should be invested into a summary:

 a) simple concatenation of all the answers might not be enough;

instead redundancies, irrelevances, verbosities and errors should

be filtered out (as good as possible),

 b) the answers shall be separated clearly

 c) the contributors of the individual answers shall be identifiable

unless they requested to remain anonymous [eds note: yes, that

happens])

 d) the summary shall start with the "quintessence" of the answers, as

seen by the original poster

 e) A summary should, when posted, clearly be indicated to be one by

giving it a Subject line starting with "Summary:"

 Note that a good summary is pure gold for the rest of the newsgroup

 community, so summary work will be most appreciated by all of us.

 (Good summaries are more valuable than any moderator!)

 5. Announcements

 Some articles never need any public reaction. These are called

 announcements (for instance for a workshop, conference or the

 availability of some technical report or software system).

 Announcements should be clearly indicated to be such by giving them a

 subject line of the form "Announcement: this-and-that", or "ust "A:

 this-and-that".

 Due to common practice, conference announcements usually carry a

 "CFP:" in their subject line, i.e. "call for papers" (or: "call for

 participation").

 6. Reports

 Sometimes people spontaneously want to report something to the

 newsgroup. This might be special experiences with some software,

 results of own experiments or conceptual work, or especially

 interesting information from somewhere else.

 Reports should be clearly indicated to be such by giving them a

 subject line of the form "Report: this-and-that"

 7. Discussions

 An especially valuable possibility of USENET is of course that of

 discussing a certain topic with hundreds of potential participants.

 All traffic in the newsgroup that can not be subsumed under one of

 the above categories should belong to a discussion.

 If somebody explicitly wants to start a discussion, he/she can do so

 by giving the posting a subject line of the form "Start discussion:

 this-and-that" (People who react on this, please remove the "Start

 discussion: " label from the subject line of your replies)

 It is quite difficult to keep a discussion from drifting into chaos,

 but, unfortunately, as many other newsgroups show there seems to be

 no secure way to avoid this. On the other hand, comp.ai.genetic has

 not had many problems with this effect, yet, so let's just go and

 hope...

 Thanks in advance for your patience!

 The Internet

 For information on internet services, see Q15.5.

 Copyright (c) 1993-1999 by J. Heitkoetter and D. Beasley, all rights

 reserved.

 This FAQ may be posted to any USENET newsgroup, on-line service, or

 BBS as long as it is posted in its entirety and includes this

 copyright statement. This FAQ may not be distributed for financial

 gain. This FAQ may not be included in commercial collections or

 compilations without express permission from the author.

Part 2

Subject: Q1: What are Evolutionary Algorithms (EAs)?

 Evolutionary algorithm is an umbrella term used to describe computer-

 based problem solving systems which use computational models of some

 of the known mechanisms of EVOLUTION as key elements in their design

 and implementation. A variety of EVOLUTIONARY ALGORITHMs have been

 proposed. The major ones are: GENETIC ALGORITHMs (see Q1.1),

 EVOLUTIONARY PROGRAMMING (see Q1.2), EVOLUTION STRATEGIEs (see Q1.3),

 CLASSIFIER SYSTEMs (see Q1.4), and GENETIC PROGRAMMING (see Q1.5).

 They all share a common conceptual base of simulating the evolution

 of INDIVIDUAL structures via processes of SELECTION, MUTATION, and

 REPRODUCTION. The processes depend on the perceived PERFORMANCE of

 the individual structures as defined by an ENVIRONMENT.

 More precisely, EAs maintain a POPULATION of structures, that evolve

 according to rules of selection and other operators, that are

 referred to as "search operators", (or GENETIC OPERATORs), such as

 RECOMBINATION and mutation. Each individual in the population

 receives a measure of its FITNESS in the environment. Reproduction

 focuses attention on high fitness individuals, thus exploiting (cf.

 EXPLOITATION) the available fitness information. Recombination and

 mutation perturb those individuals, providing general heuristics for

 EXPLORATION. Although simplistic from a biologist's viewpoint, these

 algorithms are sufficiently complex to provide robust and powerful

 adaptive search mechanisms.

 --- "An Overview of Evolutionary Computation" [ECML93], 442-459.

 BIOLOGICAL BASIS

 To understand EAs, it is necessary to have some appreciation of the

 biological processes on which they are based.

 Firstly, we should note that EVOLUTION (in nature or anywhere else)

 is not a purposive or directed process. That is, there is no

 evidence to support the assertion that the goal of evolution is to

 produce Mankind. Indeed, the processes of nature seem to boil down to

 a haphazard GENERATION of biologically diverse organisms. Some of

 evolution is determined by natural SELECTION or different INDIVIDUALs

 competing for resources in the ENVIRONMENT. Some are better than

 others. Those that are better are more likely to survive and

 propagate their genetic material.

 In nature, we see that the encoding for genetic information (GENOME)

 is done in a way that admits asexual REPRODUCTION. Asexual

 reproduction typically results in OFFSPRING that are genetically

 identical to the PARENT. (Large numbers of organisms reproduce

 asexually; this includes most bacteria which some biologists hold to

 be the most successful SPECIES known.)

 Sexual reproduction allows some shuffing of CHROMOSOMEs, producing

 offspring that contain a combination of information from each parent.

 At the molecular level what occurs (wild oversimplification alert!)

 is that a pair of almost identical chromosomes bump into one another,

 exchange chunks of genetic information and drift apart. This is the

 RECOMBINATION operation, which is often referred to as CROSSOVER

 because of the way that biologists have observed strands of

 chromosomes crossing over during the exchange.

 Recombination happens in an environment where the selection of who

 gets to mate is largely a function of the FITNESS of the individual,

 i.e. how good the individual is at competing in its environment. Some

 "luck" (random effect) is usually involved too. Some EAs use a simple

 function of the fitness measure to select individuals

 (probabilistically) to undergo genetic operations such as crossover

 or asexual reproduction (the propagation of genetic material

 unaltered). This is fitness-proportionate selection. Other

 implementations use a model in which certain randomly selected

 individuals in a subgroup compete and the fittest is selected. This

 is called tournament selection and is the form of selection we see in

 nature when stags rut to vie for the privilege of mating with a herd

 of hinds.

 Much EA research has assumed that the two processes that most

 contribute to evolution are crossover and fitness based

 selection/reproduction. Evolution, by definition, absolutely

 requires diversity in order to work. In nature, an important source

 of diversity is MUTATION. In an EA, a large amount of diversity is

 usually introduced at the start of the algorithm, by randomising the

 GENEs in the POPULATION. The importance of mutation, which

 introduces further diversity while the algorithm is running,

 therefore continues to be a matter of debate. Some refer to it as a

 background operator, simply replacing some of the original diversity

 which may have been lost, while others view it as playing the

 dominant role in the evolutionary process.

 It cannot be stressed too strongly that an EVOLUTIONARY ALGORITHM (as

 a SIMULATION of a genetic process) is not a random search for a

 solution to a problem (highly fit individual). EAs use stochastic

 processes, but the result is distinctly non-random (better than

 random).

 PSEUDO CODE

 Algorithm EA is

 // start with an initial time

 t := 0;

 // initialize a usually random population of individuals

 initpopulation P (t);

 // evaluate fitness of all initial individuals in population

 evaluate P (t);

 // test for termination criterion (time, fitness, etc.)

 while not done do

 // increase the time counter

 t := t + 1;

 // select sub-population for offspring production

 P' := selectparents P (t);

 // recombine the "genes" of selected parents

 recombine P' (t);

 // perturb the mated population stochastically

 mutate P' (t);

 // evaluate its new fitness

 evaluate P' (t);

 // select the survivors from actual fitness

 P := survive P,P' (t);

 od

 end EA.

Subject: Q1.1: What's a Genetic Algorithm (GA)?

 The GENETIC ALGORITHM is a model of machine learning which derives

 its behavior from a metaphor of some of the mechanisms of EVOLUTION

 in nature. This is done by the creation within a machine of a

 POPULATION of INDIVIDUALs represented by CHROMOSOMEs, in essence a

 set of character strings that are analogous to the base-4 chromosomes

 that we see in our own DNA. The individuals in the population then

 go through a process of simulated "evolution".

 Genetic algorithms are used for a number of different application

 areas. An example of this would be multidimensional OPTIMIZATION

 problems in which the character string of the chromosome can be used

 to encode the values for the different parameters being optimized.

 In practice, therefore, we can implement this genetic model of

 computation by having arrays of bits or characters to represent the

 chromosomes. Simple bit manipulation operations allow the

 implementation of CROSSOVER, MUTATION and other operations. Although

 a substantial amount of research has been performed on variable-

 length strings and other structures, the majority of work with

 genetic algorithms is focussed on fixed-length character strings. We

 should focus on both this aspect of fixed-lengthness and the need to

 encode the representation of the solution being sought as a character

 string, since these are crucial aspects that distinguish GENETIC

 PROGRAMMING, which does not have a fixed length representation and

 there is typically no encoding of the problem.

 When the genetic algorithm is implemented it is usually done in a

 manner that involves the following cycle: Evaluate the FITNESS of

 all of the individuals in the population. Create a new population by

 performing operations such as crossover, fitness-proportionate

 REPRODUCTION and mutation on the individuals whose fitness has just

 been measured. Discard the old population and iterate using the new

 population.

 One iteration of this loop is referred to as a GENERATION. There is

 no theoretical reason for this as an implementation model. Indeed,

 we do not see this punctuated behavior in populations in nature as a

 whole, but it is a convenient implementation model.

 The first generation (generation 0) of this process operates on a

 population of randomly generated individuals. From there on, the

 genetic operations, in concert with the fitness measure, operate to

 improve the population.

 PSEUDO CODE

 Algorithm GA is

 // start with an initial time

 t := 0;

 // initialize a usually random population of individuals

 initpopulation P (t);

 // evaluate fitness of all initial individuals of population

 evaluate P (t);

 // test for termination criterion (time, fitness, etc.)

 while not done do

 // increase the time counter

 t := t + 1;

 // select a sub-population for offspring production

 P' := selectparents P (t);

 // recombine the "genes" of selected parents

 recombine P' (t);

 // perturb the mated population stochastically

 mutate P' (t);

 // evaluate its new fitness

 evaluate P' (t);

 // select the survivors from actual fitness

 P := survive P,P' (t);

 od

 end GA.

Subject: Q1.2: What's Evolutionary Programming (EP)?

 Introduction

 EVOLUTIONARY PROGRAMMING, originally conceived by Lawrence J. Fogel

 in 1960, is a stochastic OPTIMIZATION strategy similar to GENETIC

 ALGORITHMs, but instead places emphasis on the behavioral linkage

 between PARENTs and their OFFSPRING, rather than seeking to emulate

 specific GENETIC OPERATORs as observed in nature. Evolutionary

 programming is similar to EVOLUTION STRATEGIES, although the two

 approaches developed independently (see below).

 Like both ES and GAs, EP is a useful method of optimization when

 other techniques such as gradient descent or direct, analytical

 discovery are not possible. Combinatoric and real-valued FUNCTION

 OPTIMIZATION in which the optimization surface or FITNESS landscape

 is "rugged", possessing many locally optimal solutions, are well

 suited for evolutionary programming.

 History

 The 1966 book, "Artificial Intelligence Through Simulated Evolution"

 by Fogel, Owens and Walsh is the landmark publication for EP

 applications, although many other papers appear earlier in the

 literature. In the book, finite state automata were evolved to

 predict symbol strings generated from Markov processes and non-

 stationary time series. Such evolutionary prediction was motivated

 by a recognition that prediction is a keystone to intelligent

 behavior (defined in terms of adaptive behavior, in that the

 intelligent organism must anticipate events in order to adapt

 behavior in light of a goal).

 In 1992, the First Annual Conference on evolutionary programming was

 held in La Jolla, CA. Further conferences have been held annually

 (See Q12). The conferences attract a diverse group of academic,

 commercial and military researchers engaged in both developing the

 theory of the EP technique and in applying EP to a wide range of

 optimization problems, both in engineering and biology.

 Rather than list and analyze the sources in detail, several

 fundamental sources are listed below which should serve as good

 pointers to the entire body of work in the field.

 The Process

 For EP, like GAs, there is an underlying assumption that a fitness

 landscape can be characterized in terms of variables, and that there

 is an optimum solution (or multiple such optima) in terms of those

 variables. For example, if one were trying to find the shortest path

 in a Traveling Salesman Problem, each solution would be a path. The

 length of the path could be expressed as a number, which would serve

 as the solution's fitness. The fitness landscape for this problem

 could be characterized as a hypersurface proportional to the path

 lengths in a space of possible paths. The goal would be to find the

 globally shortest path in that space, or more practically, to find

 very short tours very quickly.

 The basic EP method involves 3 steps (Repeat until a threshold for

 iteration is exceeded or an adequate solution is obtained):

 (1) Choose an initial POPULATION of trial solutions at random. The

 number of solutions in a population is highly relevant to the

 speed of optimization, but no definite answers are available as

 to how many solutions are appropriate (other than >1) and how

 many solutions are just wasteful.

 (2) Each solution is replicated into a new population. Each of

 these offspring solutions are mutated according to a

 distribution of MUTATION types, ranging from minor to extreme

 with a continuum of mutation types between. The severity of

 mutation is judged on the basis of the functional change imposed

 on the parents.

 (3) Each offspring solution is assessed by computing its fitness.

 Typically, a stochastic tournament is held to determine N

 solutions to be retained for the population of solutions,

 although this is occasionally performed deterministically.

 There is no requirement that the population size be held

 constant, however, nor that only a single offspring be generated

 from each parent.

 It should be pointed out that EP typically does not use any CROSSOVER

 as a genetic operator.

 EP and GAs

 There are two important ways in which EP differs from GAs.

 First, there is no constraint on the representation. The typical GA

 approach involves encoding the problem solutions as a string of

 representative tokens, the GENOME. In EP, the representation follows

 from the problem. A neural network can be represented in the same

 manner as it is implemented, for example, because the mutation

 operation does not demand a linear encoding. (In this case, for a

 fixed topology, real- valued weights could be coded directly as their

 real values and mutation operates by perturbing a weight vector with

 a zero mean multivariate Gaussian perturbation. For variable

 topologies, the architecture is also perturbed, often using Poisson

 distributed additions and deletions.)

 Second, the mutation operation simply changes aspects of the solution

 according to a statistical distribution which weights minor

 variations in the behavior of the offspring as highly probable and

 substantial variations as increasingly unlikely. Further, the

 severity of mutations is often reduced as the global optimum is

 approached. There is a certain tautology here: if the global optimum

 is not already known, how can the spread of the mutation operation be

 damped as the solutions approach it? Several techniques have been

 proposed and implemented which address this difficulty, the most

 widely studied being the "Meta-Evolutionary" technique in which the

 variance of the mutation distribution is subject to mutation by a

 fixed variance mutation operator and evolves along with the solution.

 EP and ES

 The first communication between the evolutionary programming and

 EVOLUTION STRATEGY groups occurred in early 1992, just prior to the

 first annual EP conference. Despite their independent development

 over 30 years, they share many similarities. When implemented to

 solve real-valued function optimization problems, both typically

 operate on the real values themselves (rather than any coding of the

 real values as is often done in GAs). Multivariate zero mean Gaussian

 mutations are applied to each parent in a population and a SELECTION

 mechanism is applied to determine which solutions to remove (i.e.,

 "cull") from the population. The similarities extend to the use of

 self-adaptive methods for determining the appropriate mutations to

 use -- methods in which each parent carries not only a potential

 solution to the problem at hand, but also information on how it will

 distribute new trials (offspring). Most of the theoretical results on

 convergence (both asymptotic and velocity) developed for ES or EP

 also apply directly to the other.

 The main differences between ES and EP are:

 1. Selection: EP typically uses stochastic selection via a

 tournament. Each trial solution in the population faces

 competition against a preselected number of opponents and

 receives a "win" if it is at least as good as its opponent in

 each encounter. Selection then eliminates those solutions with

 the least wins. In contrast, ES typically uses deterministic

 selection in which the worst solutions are purged from the

 population based directly on their function evaluation.

 2. RECOMBINATION: EP is an abstraction of EVOLUTION at the level of

 reproductive populations (i.e., SPECIES) and thus no

 recombination mechanisms are typically used because

 recombination does not occur between species (by definition: see

 Mayr's biological species concept). In contrast, ES is an

 abstraction of evolution at the level of INDIVIDUAL behavior.

 When self-adaptive information is incorporated this is purely

 genetic information (as opposed to phenotypic) and thus some

 forms of recombination are reasonable and many forms of

 recombination have been implemented within ES. Again, the

 effectiveness of such operators depends on the problem at hand.

 References

 Some references which provide an excellent introduction (by no means

 extensive) to the field, include:

 Artificial Intelligence Through Simulated Evolution [Fogel66]

 (primary)

 Fogel DB (1995) "Evolutionary Computation: Toward a New Philosophy of

 Machine Intelligence," IEEE Press, Piscataway, NJ.

 Proceeding of the first [EP92], second [EP93] and third [EP94] Annual

 Conference on Evolutionary Programming (primary) (See Q12).

 PSEUDO CODE

 Algorithm EP is

 // start with an initial time

 t := 0;

 // initialize a usually random population of individuals

 initpopulation P (t);

 // evaluate fitness of all initial individuals of population

 evaluate P (t);

 // test for termination criterion (time, fitness, etc.)

 while not done do

 // perturb the whole population stochastically

 P'(t) := mutate P (t);

 // evaluate its new fitness

 evaluate P' (t);

 // stochastically select the survivors from actual fitness

 P(t+1) := survive P(t),P'(t);

 // increase the time counter

 t := t + 1;

 od

 end EP.

 [Eds note: An extended version of this introduction is available from

 ENCORE (see Q15.3) in /FAQ/supplements/what-is-ep]

Subject: Q1.3: What's an Evolution Strategy (ES)?

 In 1963 two students at the Technical University of Berlin (TUB) met

 and were soon to collaborate on experiments which used the wind

 tunnel of the Institute of Flow Engineering. During the search for

 the optimal shapes of bodies in a flow, which was then a matter of

 laborious intuitive experimentation, the idea was conceived of

 proceeding strategically. However, attempts with the coordinate and

 simple gradient strategies (cf Q5) were unsuccessful. Then one of

 the students, Ingo Rechenberg, now Professor of Bionics and

 Evolutionary Engineering, hit upon the idea of trying random changes

 in the parameters defining the shape, following the example of

 natural MUTATIONs. The EVOLUTION STRATEGY was born. A third

 student, Peter Bienert, joined them and started the construction of

 an automatic experimenter, which would work according to the simple

 rules of mutation and SELECTION. The second student, Hans-Paul

 Schwefel, set about testing the efficiency of the new methods with

 the help of a Zuse Z23 computer; for there were plenty of objections

 to these "random strategies."

 In spite of an occasional lack of financial support, the Evolutionary

 Engineering Group which had been formed held firmly together. Ingo

 Rechenberg received his doctorate in 1970 (Rechenberg 73). It

 contains the theory of the two membered EVOLUTION strategy and a

 first proposal for a multimembered strategy which in the nomenclature

 introduced here is of the (m+1) type. In the same year financial

 support from the Deutsche Forschungsgemeinschaft (DFG, Germany's

 National Science Foundation) enabled the work, that was concluded, at

 least temporarily, in 1974 with the thesis "Evolutionsstrategie und

 numerische Optimierung" (Schwefel 77).

 Thus, EVOLUTION STRATEGIEs were invented to solve technical

 OPTIMIZATION problems (TOPs) like e.g. constructing an optimal

 flashing nozzle, and until recently ES were only known to civil

 engineering folks, as an alternative to standard solutions. Usually

 no closed form analytical objective function is available for TOPs

 and hence, no applicable optimization method exists, but the

 engineer's intuition.

 The first attempts to imitate principles of organic evolution on a

 computer still resembled the iterative optimization methods known up

 to that time (cf Q5): In a two-membered or (1+1) ES, one PARENT

 generates one OFFSPRING per GENERATION by applying NORMALLY

 DISTRIBUTED mutations, i.e. smaller steps occur more likely than big

 ones, until a child performs better than its ancestor and takes its

 place. Because of this simple structure, theoretical results for

 STEPSIZE control and CONVERGENCE VELOCITY could be derived. The ratio

 between successful and all mutations should come to 1/5: the so-

 called 1/5 SUCCESS RULE was discovered. This first algorithm, using

 mutation only, has then been enhanced to a (m+1) strategy which

 incorporated RECOMBINATION due to several, i.e. m parents being

 available. The mutation scheme and the exogenous stepsize control

 were taken across unchanged from (1+1) ESs.

 Schwefel later generalized these strategies to the multimembered ES

 now denoted by (m+l) and (m,l) which imitates the following basic

 principles of organic evolution: a POPULATION, leading to the

 possibility of recombination with random mating, mutation and

 selection. These strategies are termed PLUS STRATEGY and COMMA

 STRATEGY, respectively: in the plus case, the parental generation is

 taken into account during selection, while in the comma case only the

 offspring undergoes selection, and the parents die off. m (usually a

 lowercase mu, denotes the population size, and l, usually a lowercase

 lambda denotes the number of offspring generated per generation). Or

 to put it in an utterly insignificant and hopelessly outdated

 language:

 (define (Evolution-strategy population)

 (if (terminate? population)

 population

 (evolution-strategy

(select

 (cond (plus-strategy?

 (union (mutate

 (recombine population))

 population))

(comma-strategy?

 (mutate

 (recombine population))))))))

 However, dealing with ES is sometimes seen as "strong tobacco," for

 it takes a decent amount of probability theory and applied STATISTICS

 to understand the inner workings of an ES, while it navigates through

 the hyperspace of the usually n-dimensional problem space, by

 throwing hyperelipses into the deep...

 Luckily, this medium doesn't allow for much mathematical ballyhoo;

 the author therefore has to come up with a simple but brilliantly

 intriguing explanation to save the reader from falling asleep during

 the rest of this section, so here we go:

 Imagine a black box. A large black box. As large as, say for example,

 a Coca-Cola vending machine. Now, [..] (to be continued)

 A single INDIVIDUAL of the ES' population consists of the following

 GENOTYPE representing a point in the SEARCH SPACE:

 OBJECT VARIABLES

 Real-valued x_i have to be tuned by recombination and mutation

 such that an objective function reaches its global optimum.

 Referring to the metaphor mentioned previously, the x_i

 represent the regulators of the alien Coka-Cola vending machine.

 STRATEGY VARIABLEs

 Real-valued s_i (usually denoted by a lowercase sigma) or mean

 stepsizes determine the mutability of the x_i. They represent

 the STANDARD DEVIATION of a (0, s_i) GAUSSIAN DISTRIBUTION (GD)

 being added to each x_i as an undirected mutation. With an

 "expectancy value" of 0 the parents will produce offspring

 similar to themselves on average. In order to make a doubling

 and a halving of a stepsize equally probable, the s_i mutate

 log-normally, distributed, i.e. exp(GD), from generation to

 generation. These stepsizes hide the internal model the

 population has made of its ENVIRONMENT, i.e. a SELF-ADAPTATION

 of the stepsizes has replaced the exogenous control of the (1+1)

 ES.

 This concept works because selection sooner or later prefers

 those individuals having built a good model of the objective

 function, thus producing better offspring. Hence, learning takes

 place on two levels: (1) at the genotypic, i.e. the object and

 strategy variable level and (2) at the phenotypic level, i.e.

 the FITNESS level.

 Depending on an individual's x_i, the resulting objective

 function value f(x), where x denotes the vector of objective

 variables, serves as the PHENOTYPE (fitness) in the selection

 step. In a plus strategy, the m best of all (m+l) individuals

 survive to become the parents of the next generation. Using the

 comma variant, selection takes place only among the l offspring.

 The second scheme is more realistic and therefore more

 successful, because no individual may survive forever, which

 could at least theoretically occur using the plus variant.

 Untypical for conventional optimization algorithms and lavish at

 first sight, a comma strategy allowing intermediate

 deterioration performs better! Only by forgetting highly fit

 individuals can a permanent adaptation of the stepsizes take

 place and avoid long stagnation phases due to misadapted s_i's.

 This means that these individuals have built an internal model

 that is no longer appropriate for further progress, and thus

 should better be discarded.

 By choosing a certain ratio m/l, one can determine the

 convergence property of the evolution strategy: If one wants a

 fast, but local convergence, one should choose a small HARD

 SELECTION, ratio, e.g. (5,100), but looking for the global

 optimum, one should favour a softer selection (15,100).

 Self-adaptation within ESs depends on the following agents

 (Schwefel 87):

 Randomness: One cannot model mutation

 as a purely random process. This would mean that a child is

 completely independent of its parents.

 Population size: The population has to be sufficiently large. Not

 only

 the current best should be allowed to reproduce, but a set of

 good individuals. Biologists have coined the term "requisite

 variety" to mean the genetic variety necessary to prevent a

 SPECIES from becoming poorer and poorer genetically and

 eventually dying out.

 COOPERATION:

 In order to exploit the effects of a population (m > 1), the

 individuals should recombine their knowledge with that of others

 (cooperate) because one cannot expect the knowledge to

 accumulate in the best individual only.

 Deterioration: In order to allow better internal models (stepsizes)

 to provide better progress in the future, one should accept

 deterioration from one generation to the next. A limited life-

 span in nature is not a sign of failure, but an important means

 of preventing a species from freezing genetically.

 ESs prove to be successful when compared to other iterative

 methods on a large number of test problems (Schwefel 77). They

 are adaptable to nearly all sorts of problems in optimization,

 because they need very little information about the problem,

 especially no derivatives of the objective function. For a list

 of some 300 applications of EAs, see the SyS-2/92 report (cf

 Q14). ESs are capable of solving high dimensional, multimodal,

 nonlinear problems subject to linear and/or nonlinear

 constraints. The objective function can also, e.g. be the

 result of a SIMULATION, it does not have to be given in a closed

 form. This also holds for the constraints which may represent

 the outcome of, e.g. a finite elements method (FEM). ESs have

 been adapted to VECTOR OPTIMIZATION problems (Kursawe 92), and

 they can also serve as a heuristic for NP-complete combinatorial

 problems like the TRAVELLING SALESMAN PROBLEM or problems with a

 noisy or changing response surface.

 References

 Kursawe, F. (1992) " Evolution strategies for vector

 optimization", Taipei, National Chiao Tung University, 187-193.

 Kursawe, F. (1994) " Evolution strategies: Simple models of

 natural processes?", Revue Internationale de Systemique, France

 (to appear).

 Rechenberg, I. (1973) "Evolutionsstrategie: Optimierung

 technischer Systeme nach Prinzipien der biologischen Evolution",

 Stuttgart: Fromman-Holzboog.

 Schwefel, H.-P. (1977) "Numerische Optimierung von

 Computermodellen mittels der Evolutionsstrategie", Basel:

 Birkhaeuser.

 Schwefel, H.-P. (1987) "Collective Phaenomena in Evolutionary

 Systems", 31st Annu. Meet. Inter'l Soc. for General System

 Research, Budapest, 1025-1033.

Subject: Q1.4: What's a Classifier System (CFS)?

 The name of the Game

 First, a word on naming conventions is due, for no other paradigm of

 EC has undergone more changes to its name space than this one.

 Initially, Holland called his cognitive models "Classifier Systems"

 abbrv. with CS, and sometimes CFS, as can be found in [GOLD89].

 Whence Riolo came into play in 1986 and Holland added a reinforcement

 component to the overall design of a CFS, that emphasized its ability

 to learn. So, the word "learning" was prepended to the name, to make:

 "Learning Classifier Systems" (abbrv. to LCS). On October 6-9, 1992

 the "1st Inter'l Workshop on Learning Classifier Systems" took place

 at the NASA Johnson Space Center, Houston, TX. A summary of this

 "summit" of all leading researchers in LCS can be found on ENCORE

 (See Q15.3) in file CFS/papers/lcs92.ps.gz

 Today, the story continues, LCSs are sometimes subsumed under a "new"

 machine learning paradigm called "Evolutionary Reinforcement

 Learning" or ERL for short, incorporating LCSs, "Q-Learning", devised

 by Watkins (1989), and a paradigm of the same name, devised by Ackley

 and Littman [ALIFEIII].

 And then, this latter statement is really somewhat confusing, as

 Marco Dorigo has pointed out in a letter to editors of this guide,

 since Q-Learning has no evolutionary component. So please let the

 Senior Editor explain: When I wrote this part of the guide, I just

 had in mind that Q-Learning would make for a pretty good replacement

 of Holland's bucket-brigade algorithm, so I used this litte

 speculation to see what comes out of it; in early December 95, almost

 two years later, it has finally caught Marco's attention. But

 meanwhile, I have been proven right: Wilson has suggested to use Q-

 Learning in CLASSIFIER SYSTEM (Wilson 1994) and Dorigo & Bersini

 (1994) have shown that Q-Learning and the bucket-brigade are truly

 equivalent concepts.

 We would therefore be allowed to call a CFS that uses Q-Learning for

 rule discovery, rather than a bucket-brigade, a Q-CFS, Q-LCS, or Q-

 CS; in any case would the result be subsumed under the term ERL, even

 if Q-Learning itself is not an EVOLUTIONARY ALGORITHM!

 Interestingly, Wilson called his system ZCS (apparantly no "Q"

 inside), while Dorigo & Bersini called their system a D-Max-VSCS, or

 "discounted max very simple classifier system" (and if you know Q-

 Learning at least the D-Max part of the name will remind you of that

 algorithm). The latter paper can be found on Encore (see Q15.3) in

 file CFS/papers/sab94.ps.gz

 And by the way in [HOLLAND95] the term "classifier system" is not

 used anymore. You cannot find it in the index. Its a gone! Holland

 now stresses the adaptive component of his invention, and simply

 calls the resulting systems adaptive agents. These agents are then

 implemented within the framework of his recent invention called ECHO.

 (See http://alife.santafe.edu/alife/software/echo.html for more.)

 On Schema Processors and ANIMATS

 So, to get back to the question above, "What are CFSs?", we first

 might answer, "Well, there are many interpretations of Holland's

 ideas...what do you like to know in particular?" And then we'd start

 with a recitation from [HOLLAND75], [HOLLAND92], and explain all the

 SCHEMA processors, the broadcast language, etc. But, we will take a

 more comprehensive, and intuitive way to understand what CLASSIFIER

 SYSTEMs are all about.

 The easiest road to explore the very nature of classifier systems, is

 to take the animat (ANIMAl + ROBOT = ANIMAT) "lane" devised by Booker

 (1982) and later studied extensively by Wilson (1985), who also

 coined the term for this approach. Work continues on animats but is

 often regarded as ARTIFICIAL LIFE rather than EVOLUTIONARY

 COMPUTATION. This thread of research has even its own conference

 series: "Simulation of Adaptive Behavior (SAB)" (cf Q12), including

 other notions from machine learning, connectionist learning,

 evolutionary robotics, etc. [NB: the latter is obvious, if an animat

 lives in a digital microcosm, it can be put into the real world by

 implantation into an autonomous robot vehicle, that has

 sensors/detectors (camera eyes, whiskers, etc.) and effectors

 (wheels, robot arms, etc.); so all that's needed is to use our

 algorithm as the "brain" of this vehicle, connecting the hardware

 parts with the software learning component. For a fascinating intro

 to the field see, e.g. Braitenberg (1984)]

 classifier systems, however, are yet another offspring of John

 Holland's aforementioned book, and can be seen as one of the early

 applications of GAs, for CFSs use this EVOLUTIONARY ALGORITHM to

 adapt their behavior toward a changing ENVIRONMENT, as is explained

 below in greater detail.

 Holland envisioned a cognitive system capable of classifying the

 goings on in its environment, and then reacting to these goings on

 appropriately. So what is needed to build such a system? Obviously,

 we need (1) an environment; (2) receptors that tell our system about

 the goings on; (3) effectors, that let our system manipulate its

 environment; and (4) the system itself, conveniently a "black box" in

 this first approach, that has (2) and (3) attached to it, and "lives"

 in (1).

 In the animat approach, (1) usually is an artificially created

 digital world, e.g. in Booker's Gofer system, a 2 dimensional grid

 that contains "food" and "poison". And the Gofer itself, that walks

 across this grid and tries (a) to learn to distinguish between these

 two items, and (b) survive well fed.

 Much the same for Wilson's animat, called "*". Yes, its just an

 asterisk, and a "Kafka-esque naming policy" is one of the sign posts

 of the whole field; e.g. the first implementation by Holland and

 Reitmann 1978 was called CS-1, (cognitive system 1); Smith's Poker

 player LS-1 (1980) followed this "convention". Riolo's 1988 LCS

 implementations on top of his CFS-C library (cf Q20), were dubbed

 FSW-1 (Finite State World 1), and LETSEQ-1 (LETter SEQuence predictor

 1).

 So from the latter paragraph we can conclude that environment can

 also mean something completely different (e.g. an infinite stream of

 letters, time serieses, etc.) than in the animat approach, but

 anyway; we'll stick to it, and go on.

 Imagine a very simple animat, e.g. a simplified model of a frog.

 Now, we know that frogs live in (a) Muppet Shows, or (b) little

 ponds; so we chose the latter as our demo environment (1); and the

 former for a non-Kafka-esque name of our model, so let's dub it

 "Kermit".

 Kermit has eyes, i.e. sensorial input detectors (2); hands and legs,

 i.e. environment-manipulating effectors (3); is a spicy-fly-

 detecting-and-eating device, i.e. a frog (4); so we got all the 4

 pieces needed.

 Inside the Black Box

 The most primitive "black box" we can think of is a computer. It has

 inputs (2), and outputs (3), and a message passing system inbetween,

 that converts (i.e., computes), certain input messages into output

 messages, according to a set of rules, usually called the "program"

 of that computer. From the theory of computer science, we now borrow

 the simplest of all program structures, that is something called

 "production system" or PS for short. A PS has been shown to be

 computationally complete by Post (1943), that's why it is sometimes

 called a "Post System", and later by Minsky (1967). Although it

 merely consists of a set of if-then rules, it still resembles a full-

 fledged computer.

 We now term a single "if-then" rule a "classifier", and choose a

 representation that makes it easy to manipulate these, for example by

 encoding them into binary strings. We then term the set of

 classifiers, a "classifier population", and immediately know how to

 breed new rules for our system: just use a GA to generate new

 rules/classifiers from the current POPULATION!

 All that's left are the messages floating through the black box.

 They should also be simple strings of zeroes and ones, and are to be

 kept in a data structure, we call "the message list".

 With all this given, we can imagine the goings on inside the black

 box as follows: The input interface (2) generates messages, i.e., 0/1

 strings, that are written on the message list. Then these messages

 are matched against the condition-part of all classifiers, to find

 out which actions are to be triggered. The message list is then

 emptied, and the encoded actions, themselves just messages, are

 posted to the message list. Then, the output interface (3) checks

 the message list for messages concerning the effectors. And the cycle

 restarts.

 Note, that it is possible in this set-up to have "internal messages",

 because the message list is not emptied after (3) has checked; thus,

 the input interface messages are added to the initially empty list.

 (cf Algorithm CFS, LCS below)

 The general idea of the CFS is to start from scratch, i.e., from

 tabula rasa (without any knowledge) using a randomly generated

 classifier population, and let the system learn its program by

 induction, (cf Holland et al. 1986), this reduces the input stream to

 recurrent input patterns, that must be repeated over and over again,

 to enable the animat to classify its current situation/context and

 react on the goings on appropriately.

 What does it need to be a frog?

 Let's take a look at the behavior emitted by Kermit. It lives in its

 digital microwilderness where it moves around randomly. [NB: This

 seemingly "random" behavior is not that random at all; for more on

 instinctive, i.e., innate behavior of non-artificial animals see,

 e.g. Tinbergen (1951)]

 Whenever a small flying object appears, that has no stripes, Kermit

 should eat it, because its very likely a spicy fly, or other flying

 insect. If it has stripes, the insect is better left alone, because

 Kermit had better not bother with wasps, hornets, or bees. If Kermit

 encounters a large, looming object, it immediately uses its effectors

 to jump away, as far as possible.

 So, part of these behavior patterns within the "pond world", in AI

 sometimes called a "frame," from traditional knowledge representation

 techniques, Rich (1983), can be expressed in a set of "if <condition>

 then <action>" rules, as follows:

 IF small, flying object to the left THEN send @

 IF small, flying object to the right THEN send %

 IF small, flying object centered THEN send $

 IF large, looming object THEN send !

 IF no large, looming object THEN send *

 IF * and @ THEN move head 15 degrees left

 IF * and % THEN move head 15 degrees right

 IF * and $ THEN move in direction head pointing

 IF ! THEN move rapidly away from direction head pointing

 Now, this set of rules has to be encoded for use within a CLASSIFIER

 SYSTEM. A possible encoding of the above rule set in CFS-C (Riolo)

 classifier terminology. The condition part consists of two

 conditions, that are combined with a logical AND, thus must be met

 both to trigger the associated action. This structure needs a NOT

 operation, (so we get NAND, and know from hardware design, that we

 can build any computer solely with NANDs), in CFS-C this is denoted

 by the `~' prefix character (rule #5).

 IF THEN

 0000, 00 00 00 00

 0000, 00 01 00 01

 0000, 00 10 00 10

 1111, 01 ## 11 11

 ~1111, 01 ## 10 00

 1000, 00 00 01 00

 1000, 00 01 01 01

 1000, 00 10 01 10

 1111, ## ## 01 11

 Obviously, string `0000' denotes small, and `00' in the fist part of

 the second column, denotes flying. The last two bits of column #2

 encode the direction of the object approaching, where `00' means

 left, `01' means right, etc.

 In rule #4 a the "don't care symbol" `#' is used, that matches `1'

 and `0', i.e., the position of the large, looming object, is

 completely arbitrary. A simple fact, that can save Kermit's

 (artificial) life.

 PSEUDO CODE (Non-Learning CFS)

 Algorithm CFS is

 // start with an initial time

 t := 0;

 // an initially empty message list

 initMessageList ML (t);

 // and a randomly generated population of classifiers

 initClassifierPopulation P (t);

 // test for cycle termination criterion (time, fitness, etc.)

 while not done do

 // increase the time counter

 t := t + 1;

 // 1. detectors check whether input messages are present

 ML := readDetectors (t);

 // 2. compare ML to the classifiers and save matches

 ML' := matchClassifiers ML,P (t);

 // 3. process new messages through output interface

 ML := sendEffectors ML' (t);

 od

 end CFS.

 To convert the previous, non-learning CFS into a learning CLASSIFIER

 SYSTEM, LCS, as has been proposed in Holland (1986), it takes two

 steps:

 (1) the major cycle has to be changed such that the activation of

 each classifier depends on some additional parameter, that can

 be modified as a result of experience, i.e. reinforcement from

 the ENVIRONMENT;

 (2) and/or change the contents of the classifier list, i.e.,

 generate new classifiers/rules, by removing, adding, or

 combining condition/action-parts of existing classifiers.

 The algorithm thus changes accordingly:

 PSEUDO CODE (Learning CFS)

 Algorithm LCS is

 // start with an initial time

 t := 0;

 // an initially empty message list

 initMessageList ML (t);

 // and a randomly generated population of classifiers

 initClassifierPopulation P (t);

 // test for cycle termination criterion (time, fitness, etc.)

 while not done do

 // increase the time counter

 t := t + 1;

 // 1. detectors check whether input messages are present

 ML := readDetectors (t);

 // 2. compare ML to the classifiers and save matches

 ML' := matchClassifiers ML,P (t);

 // 3. highest bidding classifier(s) collected in ML' wins the

 // "race" and post the(ir) message(s)

 ML' := selectMatchingClassifiers ML',P (t);

 // 4. tax bidding classifiers, reduce their strength

 ML' := taxPostingClassifiers ML',P (t);

 // 5. effectors check new message list for output msgs

 ML := sendEffectors ML' (t);

 // 6. receive payoff from environment (REINFORCEMENT)

 C := receivePayoff (t);

 // 7. distribute payoff/credit to classifiers (e.g. BBA)

 P' := distributeCredit C,P (t);

 // 8. Eventually (depending on t), an EA (usually a GA) is

 // applied to the classifier population

 if criterion then

 P := generateNewRules P' (t);

 else

 P := P'

 od

 end LCS.

 What's the problem with CFSs?

 Just to list the currently known problems that come with CFSs, would

 take some additional pages; therefore only some interesting papers

 dealing with unresolved riddles are listed; probably the best paper

 containing most of these is the aforementioned summary of the LCS

 Workshop:

 Smith, R.E. (1992) "A report on the first Inter'l Workshop on LCSs"

 avail. from ENCORE (See Q15.3) in file CFS/papers/lcs92.ps.gz

 Other noteworthy critiques on LCSs include:

 Wilson, S.W. (1987) "Classifier Systems and the Animat Problem"

 Machine Learning, 2.

 Wilson, S.W. (1988) "Bid Competition and Specificity Reconsidered"

 Complex Systems, 2(5):705-723.

 Wilson, S.W. & Goldberg, D.E. (1989) "A critical review of classifier

 systems" [ICGA89], 244-255.

 Goldberg, D.E., Horn, J. & Deb, K. (1992) "What makes a problem hard

 for a classifier system?" (containing the Goldberg citation below)

 is also available from Encore (See Q15.3) in file

 CFS/papers/lcs92-2.ps.gz

 Dorigo, M. (1993) "Genetic and Non-genetic Operators in ALECSYS"

 Evolutionary Computation, 1(2):151-164. The technical report, the

 journal article is based on is avail. from Encore (See Q15.3) in file

 CFS/papers/icsi92.ps.gz

 Smith, R.E. Forrest, S. & Perelson, A.S. (1993) "Searching for

 Diverse, Cooperative POPULATIONs with Genetic Algorithms"

 Evolutionary Computation, 1(2):127-149.

 Conclusions?

 Generally speaking: "There's much to do in CFS research!"

 No other notion of EC provides more space to explore and if you are

 interested in a PhD in the field, you might want to take a closer

 look at CFS. However, be warned!, to quote Goldberg: "classifier

 systems are a quagmire---a glorious, wondrous, and inventing

 quagmire, but a quagmire nonetheless."

 References

 Booker, L.B. (1982) "Intelligent behavior as an adaption to the task

 environment" PhD Dissertation, Univ. of Michigan, Logic of Computers

 Group, Ann Arbor, MI.

 Braitenberg, V. (1984) "Vehicles: Experiments in Synthetic

 Psychology" Boston, MA: MIT Press.

 Dorigo M. & H. Bersini (1994). "A Comparison of Q-Learning and

 Classifier Systems." Proceedings of From Animals to Animats, Third

 International Conference on SIMULATION of Adaptive Behavior (SAB94),

 Brighton, UK, D.Cliff, P.Husbands, J.-A.Meyer and S.W.Wilson (Eds.),

 MIT Press, 248-255.

 http://iridia.ulb.ac.be/dorigo/dorigo/conferences/IC.11-SAB94.ps.gz

 Holland, J.H. (1986) "Escaping Brittleness: The possibilities of

 general-purpose learning algorithms applied to parallel rule-based

 systems". In: R.S. Michalski, J.G. Carbonell & T.M. Mitchell (eds),

 Machine Learning: An Artificial Intelligence approach, Vol II,

 593-623, Los Altos, CA: Morgan Kaufman.

 Holland, J.H., et al. (1986) "Induction: Processes of Inference,

 Learning, and Discovery", Cambridge, MA: MIT Press.

 Holland, J.H. (1992) "Adaptation in natural and artificial systems"

 Boston, MA: MIT Press.

 Holland, J.H. (1995) "Hidden Order: How adaptation builds complexity"

 Reading, MA: Addison-Wesley. [HOLLAND95]:

 Holland, J.H. & Reitman, J.S. (1978) "Cognitive Systems based on

 Adaptive Algorithms" In D.A. Waterman & F.Hayes-Roth, (eds) Pattern-

 directed inference systems. NY: Academic Press.

 Minsky, M.L. (1961) "Steps toward Artificial Intelligence"

 Proceedings IRE, 49, 8-30. Reprinted in E.A. Feigenbaum & J. Feldman

 (eds) Computers and Thought, 406-450, NY: McGraw-Hill, 1963.

 Minsky, M.L. (1967) "Computation: Finite and Infinite Machines"

 Englewood Cliffs, NJ: Prentice-Hall.

 Post, Emil L. (1943) "Formal reductions of the general combinatorial

 decision problem" American Journal of Mathematics, 65, 197-215.

 Rich, E. (1983) "Artificial Intelligence" NY: McGraw-Hill.

 Tinbergen, N. (1951) "The Study of Instinct" NY: Oxford Univ. Press.

 Watkins, C. (1989) "Learning from Delayed Rewards" PhD Dissertation,

 Department of Psychology, Cambridge Univ., UK.

 Wilson, S.W. (1985) "Knowledge growth in an artificial animal" in

 [ICGA85], 16-23.

 Wilson, S.W. (1994) "ZCS: a zeroth level classifier system" in EC

 2(1), 1-18.

Subject: Q1.5: What's Genetic Programming (GP)?

 GENETIC PROGRAMMING is the extension of the genetic model of learning

 into the space of programs. That is, the objects that constitute the

 POPULATION are not fixed-length character strings that encode

 possible solutions to the problem at hand, they are programs that,

 when executed, "are" the candidate solutions to the problem. These

 programs are expressed in genetic programming as parse trees, rather

 than as lines of code. Thus, for example, the simple program "a + b

 * c" would be represented as:

 +

/ \

a *

 / \

 b c

 or, to be precise, as suitable data structures linked together to

 achieve this effect. Because this is a very simple thing to do in the

 programming language Lisp, many GPers tend to use Lisp. However, this

 is simply an implementation detail. There are straightforward methods

 to implement GP using a non-Lisp programming environment.

 The programs in the population are composed of elements from the

 FUNCTION SET and the TERMINAL SET, which are typically fixed sets of

 symbols selected to be appropriate to the solution of problems in the

 domain of interest.

 In GP the CROSSOVER operation is implemented by taking randomly

 selected subtrees in the INDIVIDUALs (selected according to FITNESS)

 and exchanging them.

 It should be pointed out that GP usually does not use any MUTATION as

 a GENETIC OPERATOR.

 More information is available in the GP mailing list FAQ. (See

 Q15.2) and from http://smi-web.stanford.edu/people/koza/

 Copyright (c) 1993-1999 by J. Heitkoetter and D. Beasley, all rights

 reserved.

 This FAQ may be posted to any USENET newsgroup, on-line service, or

 BBS as long as it is posted in its entirety and includes this

 copyright statement. This FAQ may not be distributed for financial

 gain. This FAQ may not be included in commercial collections or

 compilations without express permission from the author.

Part 3

Subject: Q2: What applications of EAs are there?

 In principle, EAs can compute any computable function, i.e.

 everything a normal digital computer can do.

 But EAs are especially badly suited for problems where efficient ways

 of solving them are already known, (unless these problems are

 intended to serve as benchmarks). Special purpose algorithms, i.e.

 algorithms that have a certain amount of problem domain knowledge

 hard coded into them, will usually outperform EAs, so there is no

 black magic in EC. EAs should be used when there is no other known

 problem solving strategy, and the problem domain is NP-complete.

 That's where EAs come into play: heuristically finding solutions

 where all else fails.

 Following is an incomplete (sic!) list of successful EA

 applications:

 BIOCOMPUTING

 Biocomputing, or Bioinformatics, is the field of biology dedicated to

 the automatic analysis of experimental data (mostly sequencing data).

 Several approaches to specific biocomputing problems have been

 described that involve the use of GA, GP and simulated annealing.

 General information about biocomputing (software, databases, misc.)

 can be found on the server of the European Bioinformatics Institute:

 http://www.ebi.ac.uk/ebi_home.html ENCORE has a good selection of

 pointers related to this subject. VSCN provides a detailed online

 course on bioinformatics: http://www.techfak.uni-

 bielefeld.de/bcd/Curric/welcome.html

 There are three main domains to which GA have been applied in

 Bioinformatics: protein folding, RNA folding, sequence alignment.

 Protein Folding

 Proteins are one of the essential components of any form of life.

 They are made of twenty different types of amino acid. These amino

 acids are chained together in order to form the protein that can

 contain from a few to several thousands residues. In most of the

 cases, the properties and the function of a protein are a result of

 its three dimensional structure. It seems that in many cases this

 structure is a direct consequence of the sequence. Unfortunately, it

 is still very difficult/impossible to deduce the three dimensional

 structure, knowing only the sequence. A part of the VSCN on-line

 bioinformatics course is dedicated to the use of GAs in Protein

 Folding Prediction. It contains an extensive bibliography and a

 detailed presentation of the subject with LOTS of explanations and

 on-line papers. The URL is: http://www.techfak.uni-

 bielefeld.de/bcd/Curric/ProtEn/contents.html

 Koza [KOZA92] gives one example of GP applied to Protein Folding.

 Davis [DAVIS91] gives an example of DNA conformation prediction (a

 closely related problem) in his Handbook of GAs.

 RNA Folding

 Describing the tertiary structure of an RNA molecule, is about as

 hard as for a protein, but describing the intermediate structure

 (secondary structure) is somehow easier because RNA molecules are

 using the same pairing rules as DNA, (Watson and Crick base pairing).

 There exist deterministic algorithms that given a set of constraints

 (rules), compute the more stable structure, but: (a) their time and

 memory requirement increase quadratically or more with the length of

 the sequences, and (b) they require simplified rules. Lots of effort

 has recently been put into applying GAs to this problem, and several

 papers can be found (on-line if your institute subscribes to these

 journals):

 A genetic Algorithm Based Molecular Modelling Technique For RNA Stem-

 loop Structures H. Ogata, Y. Akiyama and M Kanehisa, Nucleic Acid

 Research, 1995, vol 23,3 419-426

 An Annealing Mutation Operator in the GA for RNA folding B.A Shapiro

 and J. C. Wu, CABIOS, 1996, vol 12, 3, 171-180

 The computer Simulation of RNA Folding Pathway Using a Genetic

 Algorithm A.P. Gultyaev, F.D.H van Batenburg and C. W. A. Pleij in

 Journal of Molecular Biology, 1995, vol 250 37-51

 Simulated Annealing has also been applied successfully to this

 problem:

 Description of RNA folding by SA M. Schmitz and G. Steger in Journal

 of Molecular Biology, 1995, 255, 245-266

 Sequence Alignments

 Sequence Alignment is another important problem of Bioinformatics.

 The aim is to align together several related sequences (from two to

 hundreds) given a cost function. For the most widely used cost

 functions, the problem has been shown to be NP-complete. Several

 attempts have been made using SA:

 Multiple Sequence Alignment Using SA J. Kim, Sakti Pramanik and M.J.

 Chung, CABIOS, 1994, vol 10, 4, 419-426

 Multiple Sequence Alignment by Parallel SA M. Isshikawa, T. Koya and

 al, CABIOS, 1993,vol 9, 3, 267-273

 SAM, software which uses Hidden Markov Models for Multiple Sequence

 Alignment, can use SA to train the model. Several papers have been

 published on SAM. The software, documentation and an extensive

 bibliography can be found in:

 http://www.cse.ucsc.edu/research/compbio/sam.html

 More recently, various software using different methods like Gibbs

 sampling or GAs has been developed:

 A Gibbs Sampling Strategy for Multiple Alignment C.E. Lawrence, S. F.

 Altschull and al, Science, October 1993, vol 262, 208-214

 SAGA: Sequence Alignment by Genetic Algorithm C. Notredame and D.G.

 Higgins, Nucleic Acid Research, 1995, vol 24, 8,

 1515-1524

 A beta release of SAGA (along with the paper) is available on the

 European Bioinformatics Institute anonymous FTP server:

 ftp.ebi.ac.uk/pub/software/unix/saga.tar.Z

 CELLULAR PROGRAMMING: Evolution of Parallel Cellular Machines

 Nature abounds in systems involving the actions of simple, locally-

 interacting components, that give rise to coordinated global

 behavior. These collective systems have evolved by means of natural

 SELECTION to exhibit striking problem-solving capacities, while

 functioning within a complex, dynamic ENVIRONMENT. Employing simple

 yet versatile parallel cellular models, coupled with EVOLUTIONARY

 COMPUTATION techniques, cellular programming is an approach for

 constructing man-made systems that exhibit characteristics such as

 those manifest by their natural counterparts.

 Parallel cellular machines hold potential both scientifically, as

 vehicles for studying phenomena of interest in areas such as complex

 adaptive systems and ARTIFICIAL LIFE, as well as practically,

 enabling the construction of novel systems, endowed with

 evolutionary, reproductive, regenerative, and learning capabilities.

 Web site: http://lslwww.epfl.ch/~moshes/cp.html

 References:

 Sipper, M. (1997) "Evolution of Parallel Cellular Machines: The

 Cellular Programming Approach", Springer-Verlag, Heidelberg.

 Sipper, M. (1996) "Co-evolving Non-Uniform Cellular Automata to

 Perform Computations", Physica D, 92, 193-208.

 Sipper, M. and Ruppin, E. (1997) "Co-evolving architectures for

 cellular machines", Physica D, 99, 428-441.

 Sipper, M. and Tomassini, M. (1996) "Generating Parallel Random

 Number Generators By Cellular Programming", International Journal of

 Modern Physics C, 7(2), 181-190.

 Sipper, M. (1997) "Evolving Uniform and Non-uniform Cellular Automata

 Networks", in Annual Reviews of Computational Physics, D. Stauffer

 (ed)

 Evolvable Hardware

 The idea of evolving machines, whose origins can be traced to the

 cybernetics movement of the 1940s and the 1950s, has recently

 resurged in the form of the nascent field of bio-inspired systems and

 evolvable hardware. The field draws on ideas from the EVOLUTIONARY

 COMPUTATION domain as well as on novel hardware innovations.

 Recently, the term evolware has been used to describe such evolving

 ware, with current implementations centering on hardware, while

 raising the possibility of using other forms in the future, such as

 bioware. The inaugural workshop, Towards Evolvable Hardware, took

 place in Lausanne, in October 1995, followed by the First

 International Conference on Evolvable Systems: From Biology to

 Hardware (ICES96) held in Japan, in October 1996. Another major event

 in the field, ICES98, was held in Lausanne, Switzerland, in September

 1998.

 References:

 Sipper, M. et al (1997) "A Phylogenetic, Ontogenetic, and Epigenetic

 View of Bio-Inspired Hardware Systems", IEEE Transactions on

 Evolutionary Computation, 1(1).

 Sanchez, E. and Tomassini, M. (eds) (1996) "Towards Evolvable

 Hardware", Springer-Verlag, Lecture Notes in Computer Science, 1062.

 Higuchi, T. et al (1997) "Proceedings of First International

 Conference on Evolvable Systems: From Biology to Hardware (ICES96)",

 Springer-Verlag, Lecture Notes in Computer Science.

 GAME PLAYING

 GAs can be used to evolve behaviors for playing games. Work in

 evolutionary GAME THEORY typically surrounds the EVOLUTION of a

 POPULATION of players who meet randomly to play a game in which they

 each must adopt one of a limited number of moves. (Maynard-Smith

 1982). Let's suppose it is just two moves, X and Y. The players

 receive a reward, analogous to Darwinian FITNESS, depending on which

 combination of moves occurs and which move they adopted. In more

 complicated models there may be several players and several moves.

 The players iterate such a game a series of times, and then move on

 to a new partner. At the end of all such moves, the players will have

 a cumulative payoff, their fitness. This fitness can then be used as

 a means of conducting something akin to Roulette-Wheel SELECTION to

 generate a new population.

 The real key in using a GA is to come up with an encoding to

 represent player's strategies, one that is amenable to CROSSOVER and

 to MUTATION. possibilities are to suppose at each iteration a player

 adopts X with some probability (and Y with one minus such). A player

 can thus be represented as a real number, or a bit-string by

 interpreting the decimal value of the bit string as the inverse of

 the probability.

 An alternative characterisation is to model the players as Finite

 State Machines, or Finite Automata (FA). These can be though of as a

 simple flow chart governing behaviour in the "next" play of the game

 depending upon previous plays. For example:

 100 Play X

 110 If opponent plays X go to 100

 120 Play Y

 130 If opponent plays X go to 100 else go to 120

 Represents a strategy that does whatever its opponent did last, and

 begins by playing X, known as "Tit-For-Tat." (Axelrod 1982). Such

 machines can readily be encoded as bit-strings. Consider the encoding

 "1 0 1 0 0 1" to represent TFT. The first three bits, "1 0 1" are

 state 0. The first bit, "1" is interpreted as "Play X." The second

 bit, "0" is interpreted as "if opponent plays X go to state 1," the

 third bit, "1", is interpreted as "if the opponent plays Y, go to

 state 1." State 1 has a similar interpretation. Crossing over such

 bit-strings always yields valid strategies.

 SIMULATIONs in the Prisoner's dilemma have been undertaken (Axelrod

 1987, Fogel 1993, Miller 1989) of these machines.

 Alternative representations of game players include CLASSIFIER

 SYSTEMs (Marimon, McGrattan and Sargent 1990, [GOLD89]), and Neural-

 networks (Fogel and Harrald 1994), though not necessarily with a GA.

 (Fogel 1993), and Fogel and Harrald 1994 use an Evolutionary

 Program).

 Other methods of evolving a population can be found in Lindgren 1991,

 Glance and Huberman 1993 and elsewhere.

 A GA for playing the game "Mastermind" has been produced. See

 http://kal-el.ugr.es/mastermind

 References.

 Axelrod, R. (1987) ``The Evolution of Strategies in the Repeated

 Prisoner's Dilemma,'' in [DAVIS91]

 Axelrod, R (?) ``The Complexity of Cooperation'' (See the web site,

 which includes code to implement tournaments:

 http://pscs.physics.lsa.umich.edu/Software/ComplexCoop.html)

 Miller, J.H. (1989) ``The Coevolution of Automata in the Repeated

 Prisoner's Dilemma'' Santa Fe Institute Working Paper 89-003.

 Marimon, Ramon, Ellen McGrattan and Thomas J. Sargent (1990) ``Money

 as a Medium of Exchange in an Economy with Artificially Intelligent

 Agents'' Journal of Economic Dynamics and Control 14, pp. 329--373.

 Maynard-Smith, (1982) Evolution and the Theory of Games, CUP.

 Lindgren, K. (1991) ``Evolutionary Phenomena in Simple Dynamics,'' in

 [ALIFEI].

 Holland, J.H and John Miller (1990) ``Artificially Adaptive Agents in

 Economic Theory,'' American Economic Review: Papers and Proceedings

 of the 103rd Annual Meeting of the American Economics Association:

 365--370.

 Huberman, Bernado, and Natalie S. Glance (1993) "Diversity and

 Collective Action" in H. Haken and A. Mikhailov (eds.)

 Interdisciplinary Approaches to Nonlinear Systems, Springer.

 Fogel (1993) "Evolving Behavior in the Iterated Prisoner's Dilemma"

 Evolutionary Computation 1:1, 77-97

 Fogel, D.B. and Harrald, P. (1994) ``Evolving Complex Behaviour in

 the Iterated Prisoner's Dilemma,'' Proceedings of the Fourth Annual

 Meetings of the Evolutionary Programming Society, L.J. Fogel and A.W.

 Sebald eds., World Science Press.

 Lindgren, K. and Nordahl, M.G. "Cooperation and Community Structure

 in Artificial Ecosystems", Artificial Life, vol 1:1&2, 15-38

 Stanley, E.A., Ashlock, D. and Tesfatsion, L. (1994) "Iterated

 Prisoners Dilemma with Choice and Refusal of Partners in [ALIFEIII]

 131-178

 JOB-SHOP SCHEDULING

 The Job-Shop Scheduling Problem (JSSP) is a very difficult NP-

 complete problem which, so far, seems best addressed by sophisticated

 branch and bound search techniques. GA researchers, however, are

 continuing to make progress on it. (Davis 85) started off GA

 research on the JSSP, (Whitley 89) reports on using the edge

 RECOMBINATION operator (designed initially for the TSP) on JSSPs too.

 More recent work includes (Nakano 91),(Yamada & Nakano 92), (Fang et

 al. 93). The latter three report increasingly better results on

 using GAs on fairly large benchmark JSSPs (from Muth & Thompson 63);

 neither consistently outperform branch & bound search yet, but seem

 well on the way. A crucial aspect of such work (as with any GA

 application) is the method used to encode schedules. An important

 aspect of some of the recent work on this is that better results have

 been obtained by rejecting the conventional wisdom of using binary

 representations (as in (Nakano 91)) in favor of more direct

 encodings. In (Yamada & Nakano 92), for example, a GENOME directly

 encodes operation completion times, while in (Fang et al. 93) genomes

 represent implicit instructions for building a schedule. The success

 of these latter techniques, especially since their applications are

 very important in industry, should eventually spawn advances in GA

 theory.

 Concerning the point of using GAs at all on hard job-shop scheduling

 problems, the same goes here as suggested above for `Timetabling':

 The GA approach enables relatively arbitrary constraints and

 objectives to be incorporated painlessly into a single OPTIMIZATION

 method. It is unlikely that GAs will outperform specialized

 knowledge-based and/or conventional OR-based approaches to such

 problems in terms of raw solution quality, however GAs offer much

 greater simplicity and flexibility, and so, for example, may be the

 best method for quick high-quality solutions, rather than finding the

 best possible solution at any cost. Also, of course, hybrid methods

 will have a lot to offer, and GAs are far easier to parallelize than

 typical knowledge-based/OR methods.

 Similar to the JSSP is the Open Shop Scheduling Problem (OSSP).

 (Fang et al. 93) reports an initial attempt at using GAs for this.

 Ongoing results from the same source shows reliable achievement of

 results within less than 0.23% of optimal on moderately large OSSPs

 (so far, up to 20x20), including an improvement on the previously

 best known solution for a benchmark 10x10 OSSP. A simpler form of job

 shop problem is the Flow-Shop Sequencing problem; recent successful

 work on applying GAs to this includes (Reeves 93)."

 Other scheduling problems

 In contrast to job shop scheduling some maintenance scheduling

 problems consider which activities to schedule within a planned

 maintenance period, rather than seeking to minimise the total time

 taken by the activities. The constraints on which parts may be taken

 out of service for maintenance at particular times may be very

 complex, particularly as they will in general interact. Some initial

 work is given in (Langdon, 1995).

 References

 Davis, L. (1985) "Job-Shop Scheduling with Genetic Algorithms",

 [ICGA85], 136-140.

 Muth, J.F. & Thompson, G.L. (1963) "Industrial Scheduling". Prentice

 Hall, Englewood Cliffs, NJ, 1963.

 Nakano, R. (1991) "Conventional Genetic Algorithms for Job-Shop

 Problems", [ICGA91], 474-479.

 Reeves, C.R. (1993) "A Genetic Algorithm for Flowshop Sequencing",

 Coventry Polytechnic Working Paper, Coventry, UK.

 Whitley, D., Starkweather, T. & D'Ann Fuquay (1989) "Scheduling

 Problems and Traveling Salesmen: The Genetic Edge Recombination

 Operator", [ICGA89], 133-140.

 Fang, H.-L., Ross, P., & Corne D. (1993) "A Promising Genetic

 Algorithm Approach to Job-Shop Scheduling, Rescheduling & Open-Shop

 Scheduling Problems", [ICGA93], 375-382.

 Yamada, T. & Nakano, R. (1992) "A Genetic Algorithm Applicable to

 Large-Scale Job-Shop Problems", [PPSN92], 281-290.

 Langdon, W.B. (1995) "Scheduling Planned Maintenance of the (UK)

 National Grid", cs.ucl.ac.uk/genetic/papers/grid_aisb-95.ps

 MANAGEMENT SCIENCES

 "Applications of EA in management science and closely related fields

 like organizational ecology is a domain that has been covered by some

 EA researchers - with considerable bias towards scheduling problems.

 Since I believe that EA have considerable potential for applications

 outside the rather narrow domain of scheduling and related

 combinatorial problems, I started collecting references about the

 status quo of EA-applications in management science. This report

 intends to make available my findings to other researchers in the

 field. It is a short overview and lists some 230 references to

 current as well as finished research projects. [..]

 "At the end of the paper, a questionnaire has been incorporated that

 may be used for this purpose. Other comments are also appreciated."

 --- from the Introduction of (Nissen 93)

 References

 Nissen, V. (1993) "Evolutionary Algorithms in Management Science: An

 Overview and List of References", Papers on Economics and Evolution,

 edited by the European Study Group for Evolutionary Economics. This

 report is also avail. via anon. FTP from

 ftp.gwdg.de/pub/msdos/reports/wi/earef.eps

 Boulding, K.E. (1991) "What is evolutionary economics?", Journal of

 Evolutionary Economics, 1, 9-17.

 NON-LINEAR FILTERING

 New connections between GENETIC ALGORITHMs and Non Linear Filtering

 Theory have been established. GAs have already been successfully

 applied to a large class of non-linear filtering problems such as

 RADAR / SONAR/ GPS signal processing. This relatively new branch of

 GA application has also lead to new results on the convergence of

 GAs: large deviations, fluctuations...

 Some preprints and references on this topic are available in the web

 page: http://www-sv.cict.fr/lsp/Delmoral/index.html

 The new results also points out some natural connections between:

 genetic type algorithms, information theory, non-linear filtering

 theory, interacting and branching particle systems.

 TIMETABLING

 This has been addressed quite successfully with GAs. A very common

 manifestation of this kind of problem is the timetabling of exams or

 classes in Universities, etc.

 The first application of GAs to the timetabling problem was to build

 the schedule of the teachers in an Italian high school. The

 research, conducted at the Department of Electronics and Information

 of Politecnico di Milano, Italy, showed that a GA was as good as Tabu

 Search, and better than simulated annealing, at finding teacher

 schedules satisfying a number of hard and soft constraints. The

 software package developed is now in current use in some high schools

 in Milano. (Colorni et al 1990)

 At the Department of Artificial Intelligence, University of

 Edinburgh, timetabling the MSc exams is now done using a GA (Corne et

 al. 93, Fang 92). An example of the use of GAs for timetabling

 classes is (Abramson & Abela 1991).

 In the exam timetabling case, the FITNESS function for a GENOME

 representing a timetable involves computing degrees of punishment for

 various problems with the timetable, such as clashes, instances of

 students having to take consecutive exams, instances of students

 having (eg) three or more exams in one day, the degree to which

 heavily-subscribed exams occur late in the timetable (which makes

 marking harder), overall length of timetable, etc. The modular nature

 of the fitness function has the key to the main potential strength of

 using GAs for this sort of thing as opposed to using conventional

 search and/or constraint programming methods. The power of the GA

 approach is the ease with which it can handle arbitrary kinds of

 constraints and objectives; all such things can be handled as

 weighted components of the fitness function, making it easy to adapt

 the GA to the particular requirements of a very wide range of

 possible overall objectives . Very few other timetabling methods, for

 example, deal with such objectives at all, which shows how difficult

 it is (without GAs) to graft the capacity to handle arbitrary

 objectives onto the basic "find shortest- length timetable with no

 clashes" requirement. The proper way to weight/handle different

 objectives in the fitness function in relation to the general GA

 dynamics remains, however, an important research problem!

 GAs thus offer a combination of simplicity, flexibility & speed which

 competes very favorably with other approaches, but are unlikely to

 outperform knowledge-based (etc) methods if the best possible

 solution is required at any cost. Even then, however, hybridisation

 may yield the best of both worlds; also, the ease (if the hardware is

 available!) of implementing GAs in parallel enhances the possibility

 of using them for good, fast solutions to very hard timetabling and

 similar problems.

 References

 Abramson & Abela (1991) "A Parallel Genetic Algorithm for Solving the

 School Timetabling Problem", Technical Report, Division of I.T.,

 C.S.I.R.O, April 1991. (Division of Information Technology,

 C.S.I.R.O., c/o Dept. of Communication & Electronic Engineering,

 Royal Melbourne Institute of Technology, PO BOX 2476V, Melbourne

 3001, Australia)

 Colorni A., M. Dorigo & V. Maniezzo (1990). Genetic Algorithms And

 Highly Constrained Problems: The Time-Table Case. Proceedings of the

 First International Workshop on Parallel Problem Solving from Nature,

 Dortmund, Germany, Lecture Notes in Computer Science 496, Springer-

 Verlag, 55-59.

 http://iridia.ulb.ac.be/dorigo/dorigo/conferences/IC.01-PPSN1.ps.gz

 Colorni A., M. Dorigo & V. Maniezzo (1990). Genetic Algorithms: A

 New Approach to the Time-Table Problem. NATO ASI Series, Vol.F 82,

 COMBINATORIAL OPTIMIZATION, (Ed. M.Akguel and others), Springer-

 Verlag, 235-239.

 http://iridia.ulb.ac.be/dorigo/dorigo/conferences/IC.02-NATOASI90.ps.gz

 Colorni A., M. Dorigo & V. Maniezzo (1990). A Genetic Algorithm to

 Solve the Timetable Problem. Technical Report No. 90-060,

 Politecnico di Milano, Italy.

 http://iridia.ulb.ac.be/dorigo/dorigo/tec.reps/TR.01-TTP.ps.gz

 Corne, D. Fang, H.-L. & Mellish, C. (1993) "Solving the Modular Exam

 Scheduling Problem with Genetic Algorithms". Proc. of 6th Int'l

 Conf. on Industrial and Engineering Applications of Artificial

 Intelligence & Expert Systems, ISAI.

 Fang, H.-L. (1992) "Investigating GAs for scheduling", MSc

 Dissertation, University of Edinburgh Dept. of Artificial

 Intelligence, Edinburgh, UK.

Subject: Q3: Who is concerned with EAs?

 EVOLUTIONARY COMPUTATION attracts researchers and people of quite

 dissimilar disciplines, i.e. EC is a interdisciplinary research

 field:

 Computer scientists

 Want to find out about the properties of sub-symbolic information

 processing with EAs and about learning, i.e. adaptive systems in

 general.

 They also build the hardware necessary to enable future EAs

 (precursors are already beginning to emerge) to huge real world

 problems, i.e. the term "massively parallel computation" [HILLIS92],

 springs to mind.

 Engineers

 Of many kinds want to exploit the capabilities of EAs on many areas

 to solve their application, esp. OPTIMIZATION problems.

 Roboticists

 Want to build MOBOTs (MOBile ROBOTs, i.e. R2D2's and #5's cousins)

 that navigate through uncertain ENVIRONMENTs, without using built-in

 "maps". The MOBOTS thus have to adapt to their surroundings, and

 learn what they can do "move-through-door" and what they can't "move-

 through-wall" on their own by "trial-and-error".

 Cognitive scientists

 Might view CFS as a possible apparatus to describe models of thinking

 and cognitive systems.

 Physicists

 Use EC hardware, e.g. Hillis' (Thinking Machine Corp.'s) Connection

 Machine to model real world problems which include thousands of

 variables, that run "naturally" in parallel, and thus can be modelled

 more easily and esp. "faster" on a parallel machine, than on a

 serial "PC" one.

 Biologists

 Are finding EAs useful when it comes to protein folding and other

 such bio-computational problems (see Q2).

 EAs can also be used to model the behaviour of real POPULATIONs of

 organisms. Some biologists are hostile to modeling, but an entire

 community of Population Biologists arose with the 'evolutionary

 synthesis' of the 1930's created by the polymaths R.A. Fisher, J.B.S.

 Haldane, and S. Wright. Wright's SELECTION in small populations,

 thereby avoiding local optima) is of current interest to both

 biologists and ECers -- populations are naturally parallel.

 A good exposition of current population Biology modeling is J.

 Maynard Smith's text Evolutionary Genetics. Richard Dawkin's Selfish

 Gene and Extended Phenotype are unparalleled (sic!) prose expositions

 of evolutionary processes. Rob Collins' papers are excellent

 parallel GA models of evolutionary processes (available in [ICGA91]

 and by FTP from ftp.cognet.ucla.edu/pub/alife/papers/).

 As fundamental motivation, consider Fisher's comment: "No practical

 biologist interested in (e.g.) sexual REPRODUCTION would be led to

 work out the detailed consequences experienced by organisms having

 three or more sexes; yet what else should [s/]he do if [s/]he wishes

 to understand why the sexes are, in fact, always

 two?" (Three sexes would make for even weirder grammar, [s/]he

 said...)

 Chemists

 And in particular biochemists and molecular chemists, are interested

 in problems such as the conformational analysis of molecular clusters

 and related problems in molecular sciences. The application of GAs

 to molecular systems has opened an interesting area of research and

 the number of chemists involved in it increases day-by-day.

 Some typical research topics include:

 o protein folding; o conformational analysis and energy

minimization; o docking algorithms for drug-design; o solvent site

prediction in macromolecules;

 Several papers have been published in journals such as Journal of

 Computational Chemistry and Journal of Computer-Aided Design.

 Some interesting WWW sites related to the applications of GAs to

 chemistry (or molecular science in general) include:

 o http://isl.msu.edu/GA/projects/biochem/biochem.html about GAs in

biochemistry (water site prediction, drug-design and protein

folding); o

http://www.tc.cornell.edu/Edu/SPUR/SPUR94/Main/John.html about the

application of GAs to the search of conformational energy minima;

o http://cmp.ameslab.gov/cmp/CMP_Theory/gsa/gen2.html By using a

GA in combiation with a Tight-binding model, David Deaven and Kai-

Ming Ho founded fullerene cages (including C60) starting from

random coordinates.

 See also Q2 for applications in biocomputing.

 Philosophers

 and some other really curious people may also be interested in EC for

 various reasons.

Subject: Q4: How many EAs exist? Which?

 The All Stars

 There are currently 3 main paradigms in EA research: GENETIC

 ALGORITHMs, EVOLUTIONARY PROGRAMMING, and EVOLUTION STRATEGIEs.

 CLASSIFIER SYSTEMs and GENETIC PROGRAMMING are OFFSPRING of the GA

 community. Besides this leading crop, there are numerous other

 different approaches, alongside hybrid experiments, i.e. there exist

 pieces of software residing in some researchers computers, that have

 been described in papers in conference proceedings, and may someday

 prove useful on certain tasks. To stay in EA slang, we should think

 of these evolving strands as BUILDING BLOCKs, that when recombined

 someday, will produce new offspring and give birth to new EA

 paradigm(s).

 Promising Rookies

 As far as "solving complex function and COMBINATORIAL OPTIMIZATION

 tasks" is concerned, Davis' work on real-valued representations and

 adaptive operators should be mentioned (Davis 89). Moreover Whitley's

 Genitor system incorporating ranking and "steady state" mechanism

 (Whitley 89), Goldberg's "messy GAs", involves adaptive

 representations (Goldberg 91), and Eshelman's CHC algorithm (Eshelman

 91). For real FUNCTION OPTIMIZATION, Differential EVOLUTION seems

 hard to beat in terms of convergence speed as well as simplicity:

 With just three control variables, tuning is particularly easy to do.

 For "the design of robust learning systems", i.e. the field

 characterized by CFS, Holland's (1986) CLASSIFIER SYSTEM, with its

 state-of-the-art implementation CFS-C (Riolo 88), we should note

 recent developments in SAMUEL (Grefenstette 89), GABIL (De Jong &

 Spears 91), and GIL (Janikow 91).

 References

 Davis, L. (1989) "Adapting operator probabilities in genetic

 algorithms", [ICGA89], 60-69.

 De Jong K.A. & Spears W. (1991) "Learning concept classification

 rules using genetic algorithms". Proc. 12th IJCAI, 651-656, Sydney,

 Australia: Morgan Kaufmann.

 Dorigo M. & E. Sirtori (1991)."ALECSYS: A Parallel Laboratory for

 Learning Classifier Systems". Proceedings of the Fourth International

 Conference on Genetic Algorithms, San Diego, California, R.K.Belew

 and L.B.Booker (Eds.), Morgan Kaufmann, 296-302.

 Dorigo M. (1995). "ALECSYS and the AutonoMouse: Learning to Control a

 Real Robot by Distributed Classifier Systems". Machine Learning, 19,

 3, 209-240.

 Eshelman, L.J. et al. (1991) "Preventing premature convergence in

 genetic algorithms by preventing incest", [ICGA91], 115-122.

 Goldberg, D. et al. (1991) "Don't worry, be messy", [ICGA91], 24-30.

 Grefenstette, J.J. (1989) "A system for learning control strategies

 with genetic algorithms", [ICGA89], 183-190.

 Holland, J.H. (1986) "Escaping brittleness: The possibilities of

 general-purpose learning algorithms applied to parallel rule-based

 systems". In R. Michalski, J. Carbonell, T. Mitchell (eds), Machine

 Learning: An Artificial Intelligence Approach. Los Altos: Morgan

 Kaufmann.

 Janikow C. (1991) "Inductive learning of decision rules from

 attribute-based examples: A knowledge-intensive Genetic Algorithm

 approach". TR91-030, The University of North Carolina at Chapel Hill,

 Dept. of Computer Science, Chapel Hill, NC.

 Riolo, R.L. (1988) "CFS-C: A package of domain independent

 subroutines for implementing classifier systems in arbitrary, user-

 defined environments". Logic of computers group, Division of

 computer science and engineering, University of Michigan.

 Whitley, D. et al. (1989) "The GENITOR algorithm and selection

 pressure: why rank-based allocation of reproductive trials is best",

 [ICGA89], 116-121.

Subject: Q4.1: What about Alife systems, like Tierra and VENUS?

 None of these are EVOLUTIONARY ALGORITHMs, but all of them use the

 evolutionary metaphor as their "playing field".

 Tierra

 Synthetic organisms have been created based on a computer metaphor of

 organic life in which CPU time is the ``energy'' resource and memory

 is the ``material'' resource. Memory is organized into informational

 patterns that exploit CPU time for self-replication. MUTATION

 generates new forms, and EVOLUTION proceeds by natural SELECTION as

 different GENOTYPEs compete for CPU time and memory space.

 Observation of nature shows that evolution by natural selection is

 capable of both OPTIMIZATION and creativity. Artificial models of

 evolution have demonstrated the optimizing ability of evolution, as

 exemplified by the field of GENETIC ALGORITHMs. The creative aspects

 of evolution have been more elusive to model. The difficulty derives

 in part from a tendency of models to specify the meaning of the

 ``genome'' of the evolving entities, precluding new meanings from

 emerging. I will present a natural model of evolution demonstrating

 both optimization and creativity, in which the GENOME consists of

 sequences of executable machine code.

 From a single rudimentary ancestral ``creature'', very quickly there

 evolve parasites, which are not able to replicate in isolation

 because they lack a large portion of the genome. However, these

 parasites search for the missing information, and if they locate it

 in a nearby creature, parasitize the information from the neighboring

 genome, thereby effecting their own replication.

 In some runs, hosts evolve immunity to attack by parasites. When

 immune hosts appear, they often increase in frequency, devastating

 the parasite POPULATIONs. In some runs where the community comes to

 be dominated by immune hosts, parasites evolve that are resistant to

 immunity.

 Hosts sometimes evolve a response to parasites that goes beyond

 immunity, to actual (facultative) hyper-parasitism. The hyper-

 parasite deceives the parasite causing the parasite to devote its

 energetic resources to replication of the hyper-parastie genome.

 This drives the parasites to extinction. Evolving in the absence of

 parasites, hyper-parasites completely dominate the community,

 resulting in a relatively uniform community characterized by a high

 degree of relationship between INDIVIDUALs. Under these

 circumstances, sociality evolves, in the form of creatures which can

 only replicate in aggregations.

 The cooperative behavior of the social hyper-parasites makes them

 vulnerable to a new class of parasites. These cheaters, hyper-hyper-

 parasites, insert themselves between cooperating social individuals,

 deceiving the social creatures, causing them to replicate the genomes

 of the cheaters.

 The only genetic change imposed on the simulator is random bit flips

 in the machine code of the creatures. However, it turns out that

 parasites are very sloppy replicators. They cause significant

 RECOMBINATION and rearrangement of the genomes. This spontaneous

 sexuality is a powerful force for evolutionary change in the system.

 One of the most interesting aspects of this instance of life is that

 the bulk of the evolution is based on adaptation to the biotic

 ENVIRONMENT rather than the physical environment. It is co-evolution

 that drives the system.

 --- "Tierra announcement" by Tom Ray (1991)

 How to get Tierra?

 The complete source code and documentation (but not executables) is

 available by anonymous FTP at: tierra.slhs.udel.edu:/ and

 life.slhs.udel.edu/ in the directories: almond/, beagle/, doc/, and

 tierra/.

 If you do not have FTP access you may obtain everything on DOS disks.

 For details, write to: Virtual Life, 25631 Jorgensen Rd., Newman, CA

 95360.

 References

 Ray, T. S. (1991) "Is it alive, or is it GA?" in [ICGA91], 527--534.

 Ray, T. S. (1991) "An approach to the synthesis of life." in

 [ALIFEII], 371--408.

 Ray, T. S. (1991) "Population dynamics of digital organisms." in

 [ALIFEII].

 Ray, T. S. (1991) "Evolution and optimization of digital

 organisms." Scientific Excellence in Supercomputing: The IBM 1990

 Contest Prize Papers, Eds. Keith R. Billingsley, Ed Derohanes, Hilton

 Brown, III. Athens, GA, 30602, The Baldwin Press, The University of

 Georgia.

 Ray, T. S. (1992) "Evolution, ecology and optimization of digital

 organisms." Santa Fe Institute working paper 92-08-042.

 Ray, T. S. "Evolution, complexity, entropy, and artificial reality."

 submitted Physica D. Avail. as tierra.slhs.udel.edu/doc/PhysicaD.tex

 Ray, T. S. (1993) "An evolutionary approach to synthetic biology,

 Zen and the art of creating life. Artificial Life 1(1). Avail. as

 tierra.slhs.udel.edu/doc/Zen.tex

 VENUS

 Steen Rasmussen's (et al.) VENUS I+II "coreworlds" as described in

 [ALIFEII] and [LEVY92], are inspired by A.K. Dewdney's well-known

 article (Dewdney 1984). Dewdney proposed a game called "Core Wars",

 in which hackers create computer programs that battle for control of

 a computer's "core" memory (Strack 93). Since computer programs are

 just patterns of information, a successful program in core wars is

 one that replicates its pattern within the memory, so that eventually

 most of the memory contains its pattern rather than that of the

 competing program.

 VENUS is a modification of Core Wars in which the Computer programs

 can mutate, thus the pseudo assembler code creatures of VENUS evolve

 steadily. Furthermore each memory location is endowed with

 "resources" which, like sunshine are added at a steady state. A

 program must have sufficient resources in the regions of memory it

 occupies in order to execute. The input of resources determines

 whether the VENUS ecosystem is a "jungle" or a "desert." In jungle

 ENVIRONMENTs, Rasmussen et al. observe the spontaneous emergence of

 primitive "copy/split" organisms starting from (structured) random

 initial conditions.

 --- [ALIFEII], p.821

 Dewdney, A.K. (1984) "Computer Recreations: In the Game called Core

 War Hostile Programs Engage in a Battle of Bits", Sci. Amer. 250(5),

 14-22.

 Farmer & Belin (1992) "Artificial Life: The Coming Evolution",

 [ALIFEII], 815-840.

 Rasmussen, et al. (1990) "The Coreworld: Emergence and Evolution of

 Cooperative Structures in a Computational Chemistry", [FORREST90],

 111-134.

 Rasmussen, et al. (1992) "Dynamics of Programmable Matter",

 [ALIFEII], 211-254.

 Strack (1993) "Core War Frequently Asked Questions (

 rec.games.corewar FAQ)" Avail. by anon. FTP from

 rtfm.mit.edu/pub/usenet/news.answers/games/corewar-faq.Z

 PolyWorld

 Larry Yaeger's PolyWorld as described in [ALIFEIII] and [LEVY92] is

 available via anonymous FTP from ftp.apple.com/pub/larryy/polyworld/

 "The subdirectories in this "polyworld" area contain the source code

 for the PolyWorld ecological simulator, designed and written by Larry

 Yaeger, and Copyright 1990, 1991, 1992 by Apple Computer.

 PostScript versions of my ARTIFICIAL LIFE III technical paper have

 now been added to the directory. These should be directly printable

 from most machines. Because some unix systems' "lpr" commands cannot

 handle very large files (ours at least), I have split the paper into

 Yaeger.ALife3.1.ps and Yaeger.ALife3.2.ps. These files can be ftp-ed

 in "ascii" mode. For unix users I have also included compressed

 versions of both these files (indicated by the .Z suffix), but have

 left the uncompressed versions around for people connecting from non-

 unix systems. I have not generated PostScript versions of the

 images, because they are color and the resulting files are much too

 large to store, retrieve, or print. Accordingly, though I have

 removed a Word-formatted version of the textual body of the paper

 that used to be here, I have left a Word-formatted version of the

 color images. If you wish to acquire it, you will need to use the

 binary transfer mode to move it to first your unix host and then to a

 Macintosh (unless Word on a PC can read it - I don't know), and you

 may need to do something nasty like use ResEdit to set the file type

 and creator to match those of a standard Word document (Type = WDBN,

 Creator = MSWD). [..]"

 --- from the README by Larry Yaeger <larryy@apple.com>

 General Alife repositories?

 Also, all of the following FTP sites carry ALIFE related info:

 ftp.cognet.ucla.edu/pub/alife/ ,

 life.anu.edu.au/pub/complex_systems/alife/ ,

 ftp.cogs.susx.ac.uk/pub/reports/csrp/ , xyz.lanl.gov/nlin-sys/ ,

 alife.santafe.edu/pub/ .

Subject: Q5: What about all this Optimization stuff?

 Just think of an OPTIMIZATION problem as a black box. A large black

 box. As large as, for example, a Coca-Cola vending machine. Now, we

 don't know anything about the inner workings of this box, but see,

 that there are some regulators to play with, and of course we know,

 that we want to have a bottle of the real thing...

 Putting this everyday problem into a mathematical model, we proceed

 as follows:

 (1) we label all the regulators with x and a number starting from 1;

 the result is a vector x, i.e. (x_1,...,x_n), where n is the

 number of visible regulators.

 (2) we must find an objective function, in this case it's obvious, we

 want to get k bottles of the real thing, where k is equal to 1.

 [some might want a "greater or equal" here, but we restricted

 ourselves to the visible regulators (we all know that sometimes a

 "kick in the right place" gets use more than 1, but I have no

 idea how to put this mathematically...)]

 (3) thus, in the language some mathematicians prefer to speak in:

 f(x) = k = 1. So, what we have here is a maximization problem

 presented in a form we know from some boring calculus lessons,

 and we also know that there at least a dozen utterly

 uninteresting techniques to solve problems presented this way...

 What can we do in order to solve this problem?

 We can either try to gain more knowledge or exploit what we already

 know about the interior of the black box. If the objective function

 turns out to be smooth and differentiable, analytical methods will

 produce the exact solution.

 If this turns out to be impossible, we might resort to the brute

 force method of enumerating the entire SEARCH SPACE. But with the

 number of possibilities growing exponentially in n, the number of

 dimensions (inputs), this method becomes infeasible even for low-

 dimensional spaces.

 Consequently, mathematicians have developed theories for certain

 kinds of problems leading to specialized OPTIMIZATION procedures.

 These algorithms perform well if the black box fulfils their

 respective prerequisites. For example, Dantzig's simplex algorithm

 (Dantzig 66) probably represents the best known multidimensional

 method capable of efficiently finding the global optimum of a linear,

 hence convex, objective function in a search space limited by linear

 constraints. (A USENET FAQ on linear programming is maintained by

 John W. Gregory of Cray Research, Inc. Try to get your hands on

 "linear-programming-faq" (and "nonlinear-programming-faq") that is

 posted monthly to sci.op-research and is mostly interesting to read.)

 Gradient strategies are no longer tied to these linear worlds, but

 they smooth their world by exploiting the objective function's first

 partial derivatives one has to supply in advance. Therefore, these

 algorithms rely on a locally linear internal model of the black box.

 Newton strategies additionally require the second partial

 derivatives, thus building a quadratic internal model. Quasi-Newton,

 conjugate gradient and variable metric strategies approximate this

 information during the search.

 The deterministic strategies mentioned so far cannot cope with

 deteriorations, so the search will stop if anticipated improvements

 no longer occur. In a multimodal ENVIRONMENT these algorithms move

 "uphill" from their respective starting points. Hence, they can only

 converge to the next local optimum.

 Newton-Raphson-methods might even diverge if a discrepancy between

 their internal assumptions and reality occurs. But of course, these

 methods turn out to be superior if a given task matches their

 requirements. Not relying on derivatives, polyeder strategy, pattern

 search and rotating coordinate search should also be mentioned here

 because they represent robust non-linear optimization algorithms

 (Schwefel 81).

 Dealing with technical optimization problems, one will rarely be able

 to write down the objective function in a closed form. We often need

 a SIMULATION model in order to grasp reality. In general, one cannot

 even expect these models to behave smoothly. Consequently,

 derivatives do not exist. That is why optimization algorithms that

 can successfully deal with black box-type situations have been

 developed. The increasing applicability is of course paid for by a

 loss of "convergence velocity," compared to algorithms specially

 designed for the given problem. Furthermore, the guarantee to find

 the global optimum no longer exists!

 But why turn to nature when looking for more powerful algorithms?

 In the attempt to create tools for various purposes, mankind has

 copied, more often instinctively than geniously, solutions invented

 by nature. Nowadays, one can prove in some cases that certain forms

 or structures are not only well adapted to their ENVIRONMENT but have

 even reached the optimum (Rosen 67). This is due to the fact that the

 laws of nature have remained stable during the last 3.5 billion

 years. For instance, at branching points the measured ratio of the

 diameters in a system of blood-vessels comes close to the theoretical

 optimum provided by the laws of fluid dynamics (2^-1/3). This, of

 course, only represents a limited, engineering point of view on

 nature. In general, nature performs adaptation, not optimization.

 The idea to imitate basic principles of natural processes for optimum

 seeking procedures emerged more than three decades ago (cf Q10.3).

 Although these algorithms have proven to be robust and direct

 OPTIMIZATION tools, it is only in the last five years that they have

 caught the researchers' attention. This is due to the fact that many

 people still look at organic EVOLUTION as a giantsized game of dice,

 thus ignoring the fact that this model of evolution cannot have

 worked: a human germ-cell comprises approximately 50,000 GENEs, each

 of which consists of about 300 triplets of nucleic bases. Although

 the four existing bases only encode 20 different amino acids,

 20^15,000,000, ie circa 10^19,500,000 different GENOTYPEs had to be

 tested in only circa 10^17 seconds, the age of our planet. So, simply

 rolling the dice could not have produced the diversity of today's

 complex living systems.

 Accordingly, taking random samples from the high-dimensional

 parameter space of an objective function in order to hit the global

 optimum must fail (Monte-Carlo search). But by looking at organic

 evolution as a cumulative, highly parallel sieving process, the

 results of which pass on slightly modified into the next sieve, the

 amazing diversity and efficiency on earth no longer appears

 miraculous. When building a model, the point is to isolate the main

 mechanisms which have led to today's world and which have been

 subjected to evolution themselves. Inevitably, nature has come up

 with a mechanism allowing INDIVIDUALs of one SPECIES to exchange

 parts of their genetic information (RECOMBINATION or CROSSOVER), thus

 being able to meet changing environmental conditions in a better way.

 Dantzig, G.B. (1966) "Lineare Programmierung und Erweiterungen",

 Berlin: Springer. (Linear programming and extensions)

 Kursawe, F. (1994) " Evolution strategies: Simple models of natural

 processes?", Revue Internationale de Systemique, France (to appear).

 Rosen, R. (1967) "Optimality Principles in Biologie", London:

 Butterworth.

 Schwefel, H.-P. (1981) "Numerical Optimization of Computer Models",

 Chichester: Wiley.

 Copyright (c) 1993-1999 by J. Heitkoetter and D. Beasley, all rights

 reserved.

 This FAQ may be posted to any USENET newsgroup, on-line service, or

 BBS as long as it is posted in its entirety and includes this

 copyright statement. This FAQ may not be distributed for financial

 gain. This FAQ may not be included in commercial collections or

 compilations without express permission from the author.

Part 4

Subject: Q10: What introductory material on EAs is there?

 There are many sources of introductory material on evolutionary

 algorithms: background books (see Q10.1), textbooks (see Q10.2),

 classical works (see Q10.3), journal articles (see Q10.4), technical

 reports (see Q10.5), more advanced literature (see Q10.6), biological

 background reading (see Q10.7), bibliography collections (see Q10.8),

 videos (see Q10.9) and CD-ROMs (Q10.10). Information on how to get

 dissertations is also given below (see Q10.11).

 Conference proceedings (see Q12) are also a good source of up-to-date

 (and sometimes introductory) material.

Subject: Q10.1: Suitable background reading for beginners?

 These books give a "flavor" of what the subject is about.

 Dawkins, R. (1976, 1989 2nd ed) "The Selfish Gene", Oxford: Oxford

 University Press. [The 2nd edition includes two new chapters]

 Dawkins, R. (1982) "The Extended Phenotype: The Gene as a Unit of

 Selection", Oxford: Oxford University Press.

 Dawkins, R. (1986) "The Blind Watchmaker", New York: W.W. Norton.

 Fogel, D. (1998) "Evolutionary Computation: The Fossil Record," IEEE

 Press. Chronicles the history of simulated evolution from the early

 1950s. http://www.natural-selection.com/people/dbf.html

 Gonick, L. (1983) "The Cartoon Guide to Computer Science", New York:

 Barnes & Noble. [eds note: features an interesting chapter on Charles

 Babbage in conjunction with "horse racing forecasting", if you want

 to use EAs to fullfill this task, better read this section first]

 Gonick, L. (1983) "The Cartoon Guide to Genetics", New York: Barnes &

 Noble.

 Regis, E. (1987) "Who got Einstein's Office? Eccentricity and Genius

 at the Institute for Advanced Study", Reading, MA: Addison Wesley

 [eds note: chapters 5, 10 and 12]

 Levy, S. (1992) "Artificial Life: The Quest for a new Creation", New

 York, NY: Pantheon. [LEVY92]: [eds note: read this and you will have

 the urge to work in this field]

 Sigmund, K. (1993) "Games of Life: Explorations in Ecology, Evolution

 and Behaviour", Oxford: Univ. Press. 252 pp. Hard/Softcover avail.

Subject: Q10.2: Textbooks on EC?

 These books go into the "nuts and bolts" of EC.

 Goldberg, D.E. (1989) "Genetic Algorithms in Search, Optimization,

 and Machine Learning",Addison-Wesley. [GOLD89]: (Probably the most

 widely referenced book in the field!)

 Davis, L. (ed) (1991) "Handbook of Genetic Algorithms", Van Nostrand

 Reinhold, New York, NY. [DAVIS91]:

 Michalewicz, Z. (1992) Genetic algorithms + Data Structures =

 Evolution Programs", Springer-Verlag, New York, NY. [MICHALE92]:

 Also second, extended edition (1994) with index. [MICHALE94]:

 Koza, J.R. (1992), Genetic Programming: On the Programming of

 Computers by means of Natural Selection", Cambridge, MA: MIT Press.

 [KOZA92]:

 Langdon, W.B. (1998), Genetic Programming and Data Structures

 Hingham, MA: Kluwer. [LANG98]:

 http://www.wkap.nl/book.htm/0-7923-8135-1

Subject: Q10.3: The Classics?

 Mostly older works which have helped to shape the field.

 Charles Darwin (1859), "The Origin of Species", London: John Murray.

 (Penguin Classics, London, 1985; New American Library, Mentor

 Paperback)

 Box, G.E.P. (1957) "Evolutionary operation: a method of increasing

 industrial productivity", Applied Statistics, 6, 81-101.

 Fraser, A.S. (1957) "Simulation of genetic systems by automatic

 digital computers", Australian Journal of Biological Sciences, 10,

 484-491.

 Friedman, G.J. (1959) "Digital simulation of an evolutionary

 process", General Systems Yearbook, 4:171-184.

 Bremermann, H.J. (1962) "Optimization through evolution and

 recombination". In M.C. Yovits, et al, (eds) Self-Organizing Systems.

 Washington, DC: Spartan Books.

 Holland, J.H. (1962) "Outline for a logical theory of adaptive

 systems", JACM, 3, 297-314.

 Samuel, A.L. (1963) "Some Studies in Machine Learning using the Game

 of Checkers", in Computers and Thought, E.A. Feigenbaum and J.

 Feldman (eds), New York: McGraw-Hill.

 Walter, W.G. (1963) "The Living Brain", New York: W.W. Norton.

 Fogel, L.J., Owens, A.J. & Walsh, M.J. (1966) "Artificial

 Intelligence through Simulated Evolution", New York: Wiley.

 [Fogel66]:

 Rosen, R. (1967) "Optimality Principles in Biology", London:

 Butterworths.

 Rechenberg, I. (1973, 1993 2nd edn) "Evolutionsstrategie: Optimierung

 technischer Systeme nach Prinzipien der biologischen Evolution",

 Stuttgart: Fromman-Holzboog. (Evolution Strategy: Optimization of

 technical systems by means of biological evolution)

 Holland, J.H. (1975) "Adaptation in natural and artificial systems",

 Ann Arbor, MI: The University of Michigan Press. [HOLLAND75]: 2nd

 edn. (1992) [HOLLAND92]:

 De Jong, K.A. (1975) "An analysis of the behavior of a class of

 genetic adaptive systems", Doctoral thesis, Dept. of Computer and

 Communication Sciences, University of Michigan, Ann Arbor.

 Schwefel, H.-P. (1977) "Numerische Optimierung von Computer-Modellen

 mittels der Evolutionsstrategie", Basel: Birkhaeuser.

 Schwefel, H.-P. (1981) "Numerical Optimization of Computer Models",

 Chichester: Wiley. [eds note: English translation of the previous

 entry; a reworked edition is currently in preparation for 1994]

 Axelrod, R. (1984) "The evolution of cooperation", NY: Basic Books.

 Cramer, N.L. (1985) "A Representation for the Adaptive Generation of

 Simple Sequential Programs" [ICGA85], 183-187.

 Baeck, T., Hoffmeister, F. & Schwefel, H.-P. (1991) "A Survey of

 Evolution Strategies" [ICGA91], 2-9.

Subject: Q10.4: Introductory Journal Articles?

 Baeck, T. & Schwefel, H.-P. (1993) "An Overview of Evolutionary

 Algorithms for Parameter Optimization", Evolutionary Computation,

 1(1), 1-23.

 Baeck, T., Rudolph, G. & Schwefel, H.-P. (1993) "Evolutionary

 Programming and Evolution Strategies: Similarities and Differences",

 [EP93], 11-22.

 Baeck, T., Hammel, U. and Schwefel, H.-P. (1997) "Evolutionary

 computation: Comments on the history and current state," IEEE Trans.

 Evolutionary Computation, Vol. 1:1, pp. 3-17

 Beasley, D., Bull, D.R., & Martin, R.R. (1993) "An Overview of

 Genetic Algortihms: Part 1, Fundamentals", University Computing,

 15(2) 58-69. Available by ftp from ENCORE (See Q15.3) in file:

 GA/papers/over93.ps.gz or from

 ralph.cs.cf.ac.uk/pub/papers/GAs/ga_overview1.ps

 Beasley, D., Bull, D.R., & Martin, R.R. (1993) "An Overview of

 Genetic Algortihms: Part 2, Research Topics", University Computing,

 15(4) 170-181. Available by ftp from ENCORE (See Q15.3) in file:

 GA/papers/over93-2.ps.gz or from

 ralph.cs.cf.ac.uk/pub/papers/GAs/ga_overview2.ps

 Brooks, R.A. (1991) "Intelligence without Reason", MIT AI Memo No.

 1293. Appeared in "Computer's and Thought", IJCAI-91.

 Dawkins, R. (1987) "The Evolution of Evolvability", [ALIFEI],

 201-220.

 Fogel, D.B. (1994) "An introduction to simulated evolutionary

 optimization," IEEE Trans. Neural Networks, Vol. 5:1, pp. 3-14.

 Goldberg, D.E. (1986) "The Genetic Algorithm: Who, How, and What

 Next?". In Kumpati S. Narenda, ed., Adaptive and Learning Systems,

 Plenum, New York, NY.

 Goldberg, D. (1994), "Genetic and Evolutionary Algorithms Come of

 Age", Communications of the ACM, 37(3), 113--119.

 Hillis, W.D. (1987) "The Connection Machine", Scientific American,

 255(6).

 Hillis, W.D. (1992) "Massively Parallel Computing" Daedalus, winter,

 121(1), 1-29. [HILLIS92]:

 Holland, J.H. (1989) "Using Classifier Systems to Study Adaptive

 Nonlinear Networks". In: Lectures in the Science of Complexity, SFI

 Studies in the Science of Complexity, D. Stein, (ed), Addison Wesley.

 Holland, J.H. (1992) "Genetic Algorithms", Scientific American,

 267(1), 66-72.

 Holland, J.H. (1992) "Complex Adaptive Systems" Daedalus, winter,

 121(1), 17-30.

 Mitchell, M. & Forrest S. (1993) "Genetic Algorithms and Artificial

 Life", Artificial Life, 1(1). Also avail. as SFI Working Paper

 31-11-072.

 Sims, K. (1991) "Artificial Evolution for Computer Graphics",

 Computer Graphics, 25(4), 319-328

 Sipper, M (1996) "A Brief Introduction to Genetic Algorithms",

 unpublished guide, available from

 http://lslwww.epfl.ch/~moshes/ga.html

 Spears, W.M., DeJong, K.A., Baeck, T., Fogel, D. & de Garis, H.

 (1993) "An Overview of Evolutionary Computation", [ECML93], 442-459.

 Peter Wayner (1991), "Genetic Algorithms: Programming takes a

 valuable tip from nature", BYTE, January, 361--368.

Subject: Q10.5: Introductory Technical Reports?

 See also Q14 for other technical

 Ficek, Rhona (1990) "Genetic Algorithms", Dept. of Computer Science

 and Operations Research, North Dakota State University. An

 introductory report, available from:

 http://www.atm.cs.ndsu.nodak.edu/Dienst/UI/2.0/Describe/ncstrl.ndsu_cs%2fNDSU-

 CS-TR-90-51

 Hoffmeister, F. & Baeck, T. (1990, 1992) "Genetic Algorithms and

 Evolution Strategies: Similarities and Differences", University of

 Dortmund, Dept. of CS, SyS-1/92. Available by ftp from

 lumpi.informatik.uni-dortmund.de:

 Serrada, Anselmo Perez (1996) "Una introducci'on a la Computaci'on

 Evolutiva". An introduction to EC in Spanish. Available from ENCORE

 (see Q15.3) in file EA/papers/intro-spanish.ps.gz with an overview in

 EA/papers/intro-spanish.leeme .

 Whitley, D. (1993) "A Genetic Algorithm Tutorial", Colorado State

 University, Dept. of CS, TR CS-93-103. Available by ftp from

 ftp.cs.colostate.edu/pub/public_html/TechReports/1993/tr-103.ps.Z or

 from http://www.cs.colostate.edu

 - follow the link to Technical Reports.

Subject: Q10.6: Not-quite-so-introductory Literature?

 Bock, P. (1993) "The Emergence of Artificial Cognition: An

 Introduction to Collective Learning", Singapore: World Scientific.

 Davis, L. (ed) (1987) "Genetic Algorithms and Simulated Annealing",

 available from Morgan Kaufmann Publishers Inc., 340 Pine St, San

 Francisco, CA 94104, (415-392-2665).

 Davidor, Y. (1991) "Genetic Algorithms and Robotics", Singapore:

 World Scientific. ISBN 9-810202172.

 Forrest, S. (ed) (1990) "Emergent Computation. Self-Organizing,

 Collective, and Cooperative Phenomena in Natural and Artificial

 Computing Networks", [FORREST90]:, Cambridge, MA: MIT Press. (Special

 issue of Physica D.)

 Hillis, W.D. (1990) "Co-Evolving Parasites Improve Simulated

 Evolution as an Optimization procedure", [ALIFEII], 313-324.

 Holland, J.H., Holyoak, K.J., Nisbett, R.E. & Thagard, P.R. (1986)

 "Induction: Processes of Inference, Learning, and Discovery",

 Cambridge, MA: MIT Press.

 Holland, J.H. (1992) "Adaptation in Natural and Artificial Systems:

 An Introductory Analysis with Applications to Biology, Control, and

 Artificial Intelligence, Cambridge, MA: MIT Press/Bradford Books,

 (2nd edn). Hard: ISBN 0-262-08213-6. Soft: ISBN 0-262-58111-6.

 Serra, R. & Zanarini, G. (1990) "Complex Systems and Cognitive

 Processes", New York, NY: Springer-Verlag.

 Stender, J. (ed.). (1993) "Parallel Genetic Algorithms", IOS

 Publishing. [Cites just about everything in the parallel GA field.

 -- John Koza]

 Rujan, P. (1988) "Searching for optimal configurations by simulated

 tunneling", Zeitschrift der Physik B", Vol.73, 391-416.

 Rudolph, G. (1994) "Convergence Analysis of Canonical Genetic

 Algorithms", IEEE Trans. on Neural Networks, Special issue on EP.

 Available by ftp from ENCORE (See Q15.3) in file:

 GA/papers/canon94.ps.gz

 Fogel, D. (1995), "Evolutionary Computation: Toward a New Philosophy

 of Machine Intelligence", Piscataway, NJ: IEEE Press. ISBN

 0-7803-1048-0.

 Schwefel, H-P. (1995) "Evolution and Optimum Seeking", New York:

 Wiley. ISBN 0-471-57148-2

Subject: Q10.7: Biological Background Readings?

 Adams, D. with Carwardine M. (1990) "Last Chance to see...", London:

 Heinemann. [David Corne: I strongly suggest you read this. Its a

 report on visits to various parts of the world to see endangered

 species. It is remarkably and wonderfully funny and illuminating. It

 would actually be a good reference to have in any bit of the FAQ to

 do with genetic diversity and/or the lack of it, or the remarkable

 kinds of adaptations that can occur for the strangest reasons.]

 Cairns-Smith, A.G. (1985) "Seven Clues to the Origin of Life",

 Cambridge: Cambridge Univ. Press.

 Fisher, R.A. (1958) "The Genetic Theory of Natural Selection", New

 York: Dover.

 Futuyma, D.J. (1986) "Evolutionary Biology", Sunderland, MA: Sinauer

 Assoc. [eds note: the bibliography of this book is truly a treasure

 chest]

 Lewin, B. (1993) "Genes IV".

 Lewontin, R.C. (1974) "The Genetic Basis of Evolutionary Change", New

 York: Columbia Univ. Press.

 Maynard Smith, J. (1972) "On Evolution", Edinburgh: Edinburgh Univ.

 Press.

 Maynard Smith, J. (1978) "Optimization Theory in Evolution", Annual

 Review of Ecology and Systematics 9:31-56.

 Maynard Smith, J. (1982) "Evolution and the Theory of Games",

 Cambridge: Cambridge Univ. Press.

 Maynard Smith, J. (1989) "The Problems of Biology", Oxford: Oxford

 Univ. Press.

 Maynard Smith, J. (1989) "Evolutionary Genetics", Oxford: Oxford

 Univ. Press.

 Mayr, E. (1963) "Animal Species and Evolution", Cambridge, MA:

 Harvard Univ. Press.

 Mayr, E. (1982) "The Groth of Biological Thought", Cambridge, MA: The

 Belknap Press of Harvard Univ. Press.

 Ridley, M. (1985) "The Problems of Evolution", Oxford: Oxford Univ.

 Press.

 Tort, P. Ed. (1996) "Dictionary of Darwinism and of Evolution",

 Paris, France: Presses Universitaires de France. Produced by a team

 of 150 international experts over a period of 10 years. Contains a

 vast amount of information about what Darwinism is and (perhaps more

 importantly) is not. Further information from

 http://www.planete.net/~ptort/darwin/evolengl.html (in various

 languages).

 Watson, J.D. (1966) "Molecular Biology of the Gene", Menlo Park:

 Benjamin.

 Watson, J.D., Hopkins, N.H., Roberts, J.W., Steitz, J.A. & Weiner,

 A.M. (1987) "Molecular Biology of the Gene (4th edn)", Menlo Park:

 Benjamin.

 Williams, G.C. (1966) "Adaptation and Natural Selection", Princeton,

 NJ: Princeton Univ. Press.

 Wright, S. (1932) "The roles of mutation, inbreeding, crossbreeding

 and selection in evolution", in: Proc. of the 6th Int'l Congress on

 Genetics I, 356.

 There is a *lot* of interesting material on biology and evolution in

 the talk.origins newsgroup repository, available by FTP. The index of

 files, available from ics.uci.edu/pub/origins/Index , lists what's

 there, and includes files on Darwinism, definition of evolution,

 introduction to evolutionary biology, a list of important FAQ files,

 speciation, and genetic drift.

Subject: Q10.8: On-line bibliography collections?

 The Big One

 Jarmo Alander has compiled probably the biggest EC bibliography

 around. It has 2500 entries, and is available in postscript form by

 ftp from: garbo.uwasa.fi/pc/research/2500GArefs.ps.gz and also from

 ENCORE (see Q15.3) in file refs/2500GArefs.ps.gz Please send any

 additions or corrections to <ja@cs.hut.fi>

 The same directory on ENCORE also contains some other bibliography

 collections.

 Combinations of GAs and NNs

 Dave Schaffer <ds1@philabs.Philips.Com> has compiled a bibliograpy on

 combinations of GAs and neural networks. About 150 entries, available

 in Bib format from ENCORE (See Q15.3) in file refs/cogann.bib.gz

 Jochen Ruhland <jochenr@neuro.informatik.uni-kassel.de> has also

 compiled a bibliography on this topic. Some papers deal only with

 neural networks, some only with genetic algorithms. About 300

 references altogether. Some include an abstract. Available from:

 ftp.neuro.informatik.uni-kassel.de/pub/NeuralNets/ in

 We_and_our_work/papers/diplom.1.bib.gz There are plans to expand this

 bibliography from time to time; the sequels will have names

 diplom.2.bib.gz, etc.

 Bibliography at IlliGAL

 A bibliography on Genetic Algorithms compiled by David E. Goldberg,

 Kelsey Milman, and Christina Tidd is available as IlliGAL Report No

 92008 (see Q14), via ftp from:

 gal4.ge.uiuc.edu/pub/papers/IlliGALs/92008part1.ps.Z and

 92008part2.ps.Z

 GAPHD Bibliography Collection

 Martyn Amos <Martyn.Amos@dcs.warwick.ac.uk> has assembled a

 collection of bibliographies from various sources, tidied up the

 entries and removed duplicates. The collections are as follows:

 Alife.bib.gz - General Artificial Life

 ICGA-93.bib.gz - Proc. International Conference on GAs (1993)

 chaos.bib.gz - Chaos theory

 ga+nn.bib.gz - GAs and neural networks

 ga.bib.gz - General GA references

 ga2.bib.gz - General GA references

 parallelGA.bib.gz - Parallel GAs

 theory.bib.gz - Theoretical computer science (bias towards graph

 theory, stochasic modelling and pobability theory)

 misc.bib.gz - Miscellaneous topics (eg. Internet)

 There are about 6200 references in total, although the biggest file

 by far is theory.bib, which is not directly related to EC. The

 references are in BibTeX format. The files are available by FTP from

 ftp.dcs.warwick.ac.uk/pub/gaphd/Bibliographies/ or by WWW from

 http://www.dcs.warwick.ac.uk/~martyn/ga.html

 Genetic Programming Bibliography

 A collection of Genetic Programming references (and other tools) is

 maintained by Bill Langdon <W.Langdon@cs.ucl.ac.uk> and is available

 via anonymous ftp from cs.ucl.ac.uk/genetic/biblio/

 Evolutionary Models in the Social Sciences

 Edmund Chattoe <E.Chattoe@surrey.ac.uk> has set up a bibliography on

 Evolutionary Models In Economics and the Social Sciences. The latest

 copy of the EMSS bibliography and some accompanying notes can be

 found at http://www.soc.surrey.ac.uk/~scs1ec/emssbib.html

 GAs and Economics

 Bernard Manderick <manderic@cs.few.eur.nl> has compiled a

 bibliography on the use of GAs in economics, and this was published

 in GA-Digest, v7n4 (with some followup comments in v7n5 & v7n7).

 This can be retrieved by FTP from

 ftp.aic.nrl.navy.mil/pub/galist/digests/v7n4 (see Q15.1).

 GAs in Control

 Carlos Fonseca <fonseca@acse.sheffield.ac.uk> has compiled a

 bibliography of about 50 references on GAs in Control, and it was

 published in GA-Digest, v7n18. This can be retrieved by FTP from

 ftp.aic.nrl.navy.mil/pub/galist/digests/v7n18 (see Q15.1).

 Parallel GAs

 A parallel GA bibliography is available via ftp from:

 unix.hensa.ac.uk/pub/parallel/faqs/parallel-genetic-algorithms

 Andreas Uhl <uhl@wst.wst.edvz.sbg.ac.at> has also compiled a parallel

 GA bibliography with about 80 entries. It is available by WWW in:

 http://www.mat.sbg.ac.at/~uhl/GA.html

 Genetic Programming

 John Koza <koza@CS.Stanford.EDU> has compiled an annotated

 bibliography on GP, and about 60 references were published in GA-

 Digest, v7n30. This can be retrieved by FTP from

 ftp.aic.nrl.navy.mil/pub/galist/digests/v7n30 or from ENCORE (See

 Q15.3) in file refs/gp-ref.gz

 GAs and protein folding

 Melanie Mitchell <mm@santafe.edu > has compiled a bibliography of

 about 40 references on this topic, and it was published in GA-Digest,

 v7n33. This can be retrieved by FTP from

 ftp.aic.nrl.navy.mil/pub/galist/digests/v7n33 (see Q15.1).

 GAs in Image Processing and Computer Vision

 Kyeongmo Park <kpark@cs.gmu.edu> has compiled a bibliography of about

 20 references on this topic, and it was published in GA-Digest,

 v8n10. This can be retrieved by FTP from

 ftp.aic.nrl.navy.mil/pub/galist/digests/v8n10 (see Q15.1).

 Masters and PhD theses

 Richard K. Belew has collected information on approximately 2600

 Masters and Ph.D. theses, nominally in the area of AI. The entire

 list (about 170KB) is available for anonymous FTP at:

 cs.ucsd.edu/pub/rik/aigen.rpt Questions, suggestions, additions etc.

 to <rik@cs.ucsd.edu>.

Subject: Q10.9: Videos?

 Fogel, D.B. (1997) "An Introduction to Evolutionary Computation," for

 ordering contact <customer.service@ieee.org>

 Sims, K. (1990) "Panspermia", ACM SIGGRAPH Video Review. Ordering

 information from http://www.siggraph.org/publications/video-

 review/SVR.html

 Langton, C.G. (ed) (1992) "Artificial Life II Video Proceedings" The

 Advanced Book Program of the Santa Fe Institute: Studies in the

 Sciences of Complexity, Addison Wesley, ISBN 0-201-55492-5. [ALIFEII-

 V]:

 Koza, J.R. & Rice, J.P. (1992) "Genetic Programming: The Movie",

 Cambridge, MA: MIT Press. See GP-faq for an order form. (see Q15)

 The Santa Fe Institute has produced a thirteen minute promotional

 video, which includes a five minute segment discussing the Tierra

 research project, illustrated with a very high quality animation

 produced by the Anti Gravity Workshop in Santa Monica, CA. To obtain

 the video, contact the Santa Fe Institute at: 1660 Old Pecos Trail,

 Suite A, Santa Fe, New Mexico 87501 (Tel: 505-984-8800, Fax:

 505-982-0565, Net: <email@santafe.edu>) or contact Linda Feferman:

 <fef@santafe.edu> or <0005851689@mcimail.com>

Subject: Q10.10: CD-ROMs?

 PTF for AI by CMU

 Carnegie Mellon University is establishing an Artificial Intelligence

 Repository to contain public domain and freely distributable

 software, publications, and other materials of interest to AI

 researchers, educators, and students. The AI Repository will be

 accessible by anonymous FTP and Andrew File System (AFS) without

 charge (See Q15.3). The contents of the repository will also be

 published by Prime Time Freeware as an inexpensive mixed-media

 (Book/CD-ROM) publication.

 For your information, here is a precis of the CD-ROM:

 PTF for AI is a periodic collection of AI-related source code and

 documentation. PTF for AI in no way modifies the legal restrictions

 on any package it includes. The first issue (1-1; Summer, 1993)

 consisted of an ISO-9660 CD-ROM bound into a ~100 page book. It

 contained ~600 MB of gzipped archives (2+ GB uncompressed and

 unpacked). Cost: $60 US.

 For more information contact: Mark Kantrowitz, Archivist, CMU AI

 Repository, Editor, PTF for AI. Net: <mkant+repository@cs.cmu.edu>,

 Tel: +1 412-268-2582, Fax: +1 412-681-5739.

 AI CD-ROM by NCC

 Network Cybernetics Corporation has released a new CD-ROM title, the

 AI CD-ROM Revision 3 (ISBN 1-886376-01-8). This is the newest

 version of an annually updated collection of artificial intelligence

 programming and research tools. This ISO-9660 format CD-ROM contains

 thousands of programs, source code collections, tutorials, research

 papers, Internet journals, and other resources. Previous versions of

 the AI CD-ROM are currently in use as teaching aids for AI-related

 University courses, as research aids to computer scientists, and as a

 source of advanced computer programming tools for application program

 developers around the world.

 The AI CD-ROM contains thousands of up to date files covering a wide

 range of topics including: Fuzzy Logic, Genetic Algorithms, Neural

 Networks, Expert Systems, Robotics, Machine Vision, Natural Language,

 Prolog, Lisp, Embedded AI, Virtual Reality, Cellular Automata, Chaos,

 Fractals, and more. The disc is divided into topical subdirectories

 and each directory contains an index file with descriptive listings

 of the contents. The AI CD-ROM has received good reviews in many

 magazines including Byte (Jerry Pournelle, March '93) and IEEE

 Computer (J. Zalewski, July '93), CD-ROM Professional and others.

 The CD-ROM has a list price of $89.00.

 For people wanting to see a complete listing of the CD's contents,

 FTP to ftp.ncc.com:/ and get the file AICD3.ZIP. The file is also

 available from the Compuserve AIEXPERT forum, and the NCC dial-up BBS

 at 214-258-1832. Also check out the WWW site at:

 http://www.ncc.com/cdroms/ai/index.html

 Enquiries to: Network Cybernetics Corporation, 4201 Wingren Road,

 Suite 202, Irving, TX 75062-2763, USA <ai-info@ncc.com>

Subject: Q10.11: How do I get a copy of a dissertation?

 All US American dissertations are available from: UMI Dissertation

 Information Service, University Microfilms International, A Bell &

 Howell Information Company, 300 N. Zeeb Road, Ann Arbor, Michigan

 48106, USA. Tel.: 800-521-0600, or +1 (313) 761-4700

Subject: Q11: What EC related journals and magazines are there?

 1. Dedicated EC Journals:

 Evolutionary Computation

 Published quarterly by: MIT Press Journals, 55 Hayward Street,

 Cambridge, MA 02142-1399, USA. Tel: (617) 253-2889, Fax: (617)

 258-6779, <journals-orders@mit.edu>

 Along with the explosive growth of the computing industry has come

 the need to design systems capable of functioning in complex,

 changing ENVIRONMENTs. Considerable effort is underway to explore

 alternative approaches to designing more robust computer systems

 capable of learning from and adapting to the environment in which

 they operate.

 One broad class of such techniques takes its inspiration from natural

 systems with particular emphasis on evolutionary models of

 computation such as GAs, ESs. CFS, and EP. Until now, information

 on these techniques has been widely spread over numerous disciplines,

 conferences, and journals. [eds note: The editorial board reads like

 a who-is-who in EC.] For paper e-mail submission, use one of the

 following addresses:

 o America: John Grefenstette <gref@aic.nrl.navy.mil>

 o Europe: Heinz Muehlenbein <heinz.muehlenbein@gmd.de>

 o Asia: Hiroaki Kitano <kitano@csl.sony.co.jp>

 o Ed-in-chief: Ken De Jong <kdejong@aic.gmu.edu>

 Please note, that submissions should be sent to one of the sub-

 editors. Grefenstette and Kitano accept LaTeX or PostScript

 submissions.

 BioSystems

 Journal of Biological and Information Processing Sciences, Elsevier

 Science Publishers, P.O. Box 1527, 1000 BM Amsterdam, The

 Netherlands.

 BioSystems encourages experimental, computational, and theoretical

 articles that link biology, evolutionary thinking, and the

 information processing sciences. The link areas form a circle that

 encompasses the fundamental nature of biological information

 processing, computational modeling of complex biological systems,

 evolutionary models of computation, the application of biological

 principles to the design of novel computing systems, and the use of

 biomolecular materials to synthesize artificial systems that capture

 essential principles of natural biological information processing.

 Topics: Molecular EVOLUTION: Self-organizing and self-replicating

 systems, Origin and evolution of the genetic mechanism; Biological

 Information Processing: Molecular recognition, Cellular control,

 Neuromuscular computing, Biological adaptability, Molecular computing

 technologies; EVOLUTIONARY SYSTEMS: Stochastic EVOLUTIONARY

 ALGORITHMs, Evolutionary OPTIMIZATION, SIMULATION of genetic and

 ecological systems, Applications (neural nets, machine learning,

 robotics))

 IEEE Transactions on Evolutionary Computation

 The IEEE Transactions on Evolutionary Computation will publish

 archival journal quality original papers in EVOLUTIONARY COMPUTATION

 and related areas, with particular emphasis on the practical

 application of the techniques to solving real problems in industry,

 medicine, and other disciplines. Specific techniques include but are

 not limited to EVOLUTION STRATEGIEs, EVOLUTIONARY PROGRAMMING,

 GENETIC ALGORITHMs, and associated methods of GENETIC PROGRAMMING and

 CLASSIFIER SYSTEMs. Papers emphasizing mathematical results should

 ideally seek to put these results in the context of algorithm design,

 however purely theoretical papers will be considered. Other papers

 in the areas of cultural algorithms, ARTIFICIAL LIFE, molecular

 computing, evolvable hardware, and the use of simulated evolution to

 gain a better understanding of naturally evolved systems are also

 encouraged.

 Papers must conform to IEEE standard submission guidelines which are

 available in IEEE transactions (for example, see the IEEE

 Transactions on Neural Networks or the IEEE Transactions on Fuzzy

 Systems). Those wanting to receive an author's information booklet

 from the IEEE can request this at <trans@ieee.org>.

 Six (6) hard copies of the manuscript should be sent to: David B.

 Fogel, Editor-in-Chief, IEEE Transactions on Evolutionary

 Computation, c/o Natural Selection, Inc., 3333 N. Torrey Pines Ct.,

 Suite 200, La Jolla, CA 92037, USA.

 The editor-in-chief will be pleased to comment on the suitability of

 other submissions at the request of the authors. Further questions

 can be directed to <d.fogel@ieee.org>. The transactions will appear

 quarterly.

 2. Related Journals:

 Complex Systems

 Published by: Complex Systems Publications, Inc., P.O. Box 6149,

 Champaign, IL 61821-8149, USA.

 Complex Systems devotes to the rapid publication of research on the

 science, mathematics, and engineering of systems with simple

 components but complex overall behavior. Try finger(1) on

 <jcs@wri.com> for additional info.

 Machine Learning

 Published by: Kluwer Academic Publishers, P.O. Box 358, Accord

 Station, Hingham, MA 02018-0358 USA.

 Machine Learning is an international forum for research on

 computational approaches to learning. The journal publishes articles

 reporting substantive research results on a wide range of learning

 methods applied to a variety of task domains. The ideal paper will

 make a theoretical contribution supported by a computer

 implementation.

 The journal has published many key papers in learning theory,

 reinforcement learning, and decision tree methods. The journal

 regularly publishes special issues devoted to GAs and CFS as well.

 Adaptive Behavior

 Published quarterly by: MIT Press Journals, details above.

 Broadly, behavior is adaptive if it deals successfully with changes

 circumstances. For example, when surprised, a hungry --but

 environmentally informed-- mouse may dart for cover rather than

 another piece of cheese. Similarly, a tripped-up ROBOT [eds note: not

 necessarily built by Sirius Cybernetics Corp.] could get back on its

 feet and accomplish a moonrock-finding mission if it had learned to

 cope with unanticipated lunar potholes.

 Adaptive Behavior thus takes an approach complementary to traditional

 AI. Now basic abilities that allow animals to survive, or robots to

 perform their mission in unpredictable ENVIRONMENTs, will be studied

 in preference to more elaborate and human-specific abilities.

 The journal also aims to investigate which new insights into

 intelligence and cognition can be achieved by explicitly taking into

 account the environment feedback --mediated by behavior-- that an

 animal or a robot receives, instead of studying components of

 intelligence in isolation.

 Topics: INDIVIDUAL and Collective Behavior. Neural Correlates of

 Behavior. Perception and Motor Control. Motivation and Emotion.

 Action SELECTION and Behavioral Sequences. Internal World Models.

 Ontogeny, Learning, and EVOLUTION. Characterization of environments.

 Artificial Life

 Published quarterly by: MIT Press Journals, details above.

 Artificial Life is intended to be the primary forum for the

 dissemination of scientific and engineering research in the field of

 ARTIFICIAL LIFE. It will report on synthetic biological work being

 carried out in any and all media, from the familiar "wetware" of

 organic chemistry, through the inorganic "hardware" of mobile robots,

 all the way to the virtual "software" residing inside computers.

 Research topics ranging from the fabrication of self-replicating

 molecules to the study of evolving POPULATIONs of computer programs

 will be included.

 There will also be occasional issues devoted to special topics, such

 as L-Systems, GENETIC ALGORITHMs, in-vitro evolution of molecules,

 artificial cells, computer viruses, and many social and philosophical

 issues arising from the attempt to synthesize life artificially.

 [eds note: The editorial board reads like a who-is-who in ALIFE]

 Evolutionary Economics

 Published quarterly by: Springer-Verlag New York, Inc., Service

 Center Secaucus, 44 Hartz Way, Secaucus, NJ 07094, USA. Tel: (201)

 348-4033, Fax: (201) 348-4505.

 Evolutionary Economics aims to provide an international forum for a

 new approach to economics. Following the tradition of Joseph A.

 Schlumpeter, it is designed to focus on original research with an

 evolutionary conception of the economy. The journal will publish

 articles with strong emphasis on dynamics, changing structures

 (including technologies, institutions, beliefs, imitation, etc.). It

 favors interdisciplinary analysis and is devoted to theoretical,

 methodological and applied work.

 Research areas include: industrial dynamics; multi-sectoral and

 cross-country studies of productivity; innovations and new

 technologies; dynamic competition and structural change in a national

 and international context; causes and effects of technological,

 political and social changes; cyclic processes in economic evolution;

 the role of governments in a dynamic world; modeling complex dynamic

 economic systems; application of concepts, such as self-organization,

 bifurcation, and chaos theory to economics; evolutionary games.

Subject: Q12: What are the important conferences/proceedings on EC?

 1. Dedicated EC Conferences:

 ICGA: International Conference on Genetic Algorithms

 Major international conference held in North America in odd-numbered

 years. Covers all aspects of EVOLUTIONARY COMPUTATION. The 1999

 conference will be held on July 14--17 in Orlando, Florida, in

 conjunction with the annual Genetic Programming conference. It will

 be titled GECCO (Genetic and Evolutionary Computation Conference)

 The 1997 conference was at Michigan State University, East Lansing,

 USA. Details from http://GARAGe.cps.msu.edu/icga97/index.html

 Proceedings of the 1st International Conference on Genetic Algorithms

 (1985) J.J. Grefenstette (ed) [ICGA85]: and Proc. of the 2nd Int'l

 Conf. on Genetic Algorithms (1987) J.J. Grefenstette (ed) [ICGA87]:

 available from Lawrence Erlbaum Associates, Inc., 365 Broadway,

 Hillsdale, New Jersey, 07642, (800) 926-6579.

 Proc. of the 3rd Int'l Conf. on Genetic Algorithms (1989) J.D.

 Schaffer (ed) [ICGA89]: and Proc. of the 4th Int'l Conf. on Genetic

 Algorithms (1991) R.K. Belew and L.B. Booker (eds) [ICGA91]: and

 Proc. of the 5th Int'l Conf. on Genetic Algorithms (1993) S. Forrest

 (ed) [ICGA93]: and Proc. of the 6th Int'l Conf. on Genetic Algorithms

 (1995) [ICGA95]: available from Morgan Kaufmann Publishers, Inc., San

 Francisco (415-392-2665). <morgan@unix.sri.com>

 FOGA: Foundations of Genetic Algorithms

 Major international workshop focusing on theoretical aspects of EC,

 that's usually limited to some 50 participants and is usually held

 somewhere in North America. FOGA 5, however, was held in Leiden, The

 Netherlands on 24-26 September 1998. Details from:

 http://www.wi.leidenuniv.nl/CS/ALP/foga98.html

 Foundations of Genetic Algorithms (1991) G.J.E. Rawlins (ed)

 [FOGA91]: and Foundations of Genetic Algorithms 2 (1993) L.D. Whitley

 [FOGA93]: available from Morgan Kaufmann Publishers, Inc., San

 Francisco (415-392-2665). <morgan@unix.sri.com>

 FOGA 3 took place in 1994. Enquires to: Darrell Whitley,

 <whitley@cs.colostate.edu>. FOGA 4 took place from August 3-5 1996

 in San Diego, California. Details from

 http://www.aic.nrl.navy.mil/galist/foga/

 PPSN: Parallel Problem Solving from Nature

 Major international conference held in Europe in even-numbered years.

 Covers all aspects of problem solving inspired by natural processes.

 The 1998 conference was held in Amsterdam, The Netherlands, September

 27 - October 1. Information from:

 http://www.wi.leidenuniv.nl/CS/ALP/ppsn98.html Further information on

 all PPSN conferences is available from:

 http://LS11-www.informatik.uni-dortmund.de/PPSN/

 Parallel Problem Solving from Nature, (1990) H.-P. Schwefel and R.

 Maenner (eds) [PPSN90]: published by Springer-Verlag, 175 5th Avenue,

 New York, NY, 10010, (212) 460-1500. Parallel Problem Solving from

 Nature 2, (1992) R. Maenner and B. Manderick (eds) [PPSN92]:

 published by North-Holland, Elsevier Science Publishers, Sara

 Burgerhartstraat 25, P.O. Box 211, 1000 AE Amsterdam, The

 Netherlands. Parallel Problem Solving from Nature 3, (1994) Y.

 Davidor (ed.), [PPSN94]: PPSN96 was held in Berlin, September 1996.

 EP: Annual Conference on Evolutionary Programming

 Major international annual conference held in USA. Covers all

 aspects of EC with emphasis on EP related research. The 1999

 conference will be held in conjunction with the ICEC (See below).

 The 1997 conference was held on April 13-16 in Indianapolis. Details

 from Pete Angeline <pja@lfs.loral.com>. The 1996 conference was held

 on Feb 29-March 3. The 1995 conference was held on March 1-4.

 Details from David Fogel <fogel@sunshine.ucsd.edu>.

 Proceedings of the 1st Annual Conference on Evolutionary Programming,

 (1992) D.B. Fogel and W. Atmar (eds), [EP92]:, and Proc. of the 2nd

 Annual Conf. on Evolutionary Programming, (1993) D.B. Fogel and W.

 Atmar (eds), [EP93]: published by the Evolutionary Programming

 Society, 9363 Towne Centre Dr., San Diego, CA 92121, Attn: Bill

 Porto, Treasurer (cf Q13). Proceedings of the Third Annual

 Conference on Evolutionary Programming, (1994) A.V. Sebald and L.J.

 Fogel (eds), [EP94]:, World Scientific Publishers, River Edge, NJ.

 ICEC: IEEE Conference on Evolutionary Computation

 Major international conference covering all aspects of EC. The sixth

 conference will be held in Washington DC, from 6-9 July 1999. It is

 titled the Congress on Evolutionary Computation, (CEC) and it will be

 held in conjunction with the Evolutionary Programming Conference (EP)

 and Genetic Algorithms in Engineering Systems: Innovations and

 Applications (GALESIA). Details from http://garage.cps.msu.edu/cec99/

 The fifth conference was held in Anchorage, Alaska, USA, from May 4-9

 1998. Details from http://www.arc.unm.edu/wcci-98/icec.html . The

 fourth was on April 14-17 1997 in Indianapolis (in conjunction with

 EP97). The third was on May 20-22 1996 in Nagoya, Japan, details

 from http://www.bioele.nuee.nagoya-u.ac.jp/ICEC96/ . The second was

 on 29 Nov--1 Dec 1995 in Perth, Australia. Details from

 <ec95@ee.uwa.edu.au> . The first took place in June 1994 at the

 World Congress on Computational Intelligence, Florida.

 Proceedings of the 1st IEEE Conference on Evolutionary Computation,

 (1994) D.B. Fogel (ed.) (2 Volumes). Published by IEEE, 445 Hoes

 Lane, PO Box 1331, Piscataway, NJ 08855-1331. Also, talks from

 invited speakers are published in "Computational Intelligence

 Imitating Life" (1994) J.M. Zurada, R.J. Marks, C.J. Robinson (eds),

 IEEE.

 Genetic Programming

 The 1998 conference dedicated to GP was held on July 22-25 at the

 University of Winconsin. The 1999 conference will be held on July

 14-17 in Orlando, Florida, in conjunction with the ICGA (see above).

 Details of the GP conferences can be obtained from:

 http://www.genetic-programming.org or from <gp@aaai.org>.

 The first conference was held on July 28--31 1996 at Stanford

 University, California. Details from:

 http://www.cs.brandeis.edu/~zippy/gp-96.html

 2. Related Conferences:

 Alife: International Conference on Artificial Life

 Proceedings of the 1st International Conference on ARTIFICIAL LIFE,

 (1989) C.G. Langton (ed), Santa Fe Institute Studies in the Sciences

 of Complexity, Proc. Vol. VI, [ALIFEI]: and Proc. of the 2nd Int'l

 Conf. on Artificial Life II, (1992) C.G. Langton, C. Taylor, J. Doyne

 Farmer and S. Rasmussen (eds), Santa Fe Institute Studies in the

 Sciences of Complexity, Proc. Vol. X, [ALIFEII]: and Proc. of the 3rd

 Int'l Conf. on Artificial Life III, (1993) C.G. Langton (ed),

 [ALIFEIII]: published by Addison Wesley, Redwood City, CA, USA.

 Artificial life IV, was organized by Rodney Brooks, MIT AI Lab,

 <alife@ai.mit.edu> and held on July 6-8, 1994. Proceedings edited by

 R. Brooks and P. Maes. [ALIFEIV]:

 ECAL: European Conference on Artificial Life

 Proceedings of the 1st European Conference on Artificial life, (1991)

 F.J. Varela and P. Bourgine (eds), [ECAL91]: and Proc. of the 2nd

 European Conf. on ALIFE: Self-organization and life, from simple

 rules to global complexity, (1993), (? eds) (? pub) [ECAL93]:

 published by MIT Press, Cambridge, MA, USA.

 ECML: European Conference on Machine Learning

 Machine Learning: ECML-93, Proc. European Conf. on Machine Learning,

 (1993) P.B. Brazil (ed), [ECML93]: published by Springer, New York,

 NY, USA.

 ICANNGA: International Conference on Artificial Neural Networks and

 Genetic Algorithms

 Held every 2 years since 1993. The 1997 conference is on April 1-4 in

 Norwich, England. Details from

 http://www.sys.uea.ac.uk/Research/ResGroups/MAG/ICANNGA97/

 SAB: International Conference on Simulation of Adaptive Behavior

 From Animals to Animats. Proceedings of the 1st International

 Conference on SIMULATION of Adaptive Behavior, (1991) [SAB90]: J.-A.

 Meyer and S.W. Wilson, ISBN 0-262-63138-5, and Proc. of the 2nd Int'l

 Conf. on Simulation of Adaptive Behavior, (1993) [SAB92]:, J.-A.

 Meyer, H. Roitblat and S.W. Wilson (eds) and Proc. of the 3rd Int'l

 Conf. on Simulation of Adaptive Behavior, [SAB94]:, P. Husbands,

 J.-A. Meyer and S.W. Wilson (eds) published by MIT Press, Cambridge,

 MA, USA.

 SAB96 took place on September 9-13, 1996 in Cape Cod, MA USA.

 Details from http://www.cs.brandeis.edu/conferences/sab96

 3. Pointers to upcoming Conferences:

 The Genetic Algorithm Digest

 Aka "GA-Digest" always starts with a "Calendar of GA-related Events,"

 i.e. a list of upcoming conferences, covering the complete field of

 EAs (see Q15.1), available from http://www.aic.nrl.navy.mil/galist/

 The Artificial Life Digest

 Aka "Alife digest" always starts with a "Calendar of Alife-related

 Events," that lists conferences, workshops, etc. (cf Q15)

 The Evolutionary Programming Digest

 Aka "EP-digest" doesn't list conferences explicitly, like the

 previously mentioned ones, but carries most CFP's; that can be looked

 at in the backissues folder: amazon.eng.fau.edu/pub/ep-list/digest/

 (cf Q15)

Subject: Q13: What Evolutionary Computation Associations exist?

 ISGA: International Society on Genetic Algorithms

 The ISGA is a mostly fascinating society: it neither has a

 membership fee (which makes it even more fascinating), nor an

 address. However, ISGA meetings usually take place during ICGA

 conferences, in so-called business meetings (BMs). [eds note: So

 during a conference, ask for BMs, if you want to join; or be ready to

 dart out of the room if you don't...]

 EPS: Evolutionary Programming Society

 Membership is $40/year ($10/year for students with id) and also gives

 you a discounted registration at the annual conference. You can also

 order EP proceedings ($30/members, $45/other) from EPS.

 Address: Evolutionary Programming Society, 9363 Towne Centre Dr., San

 Diego, CA 92121, Attn: Bill Porto, Treasurer.

Subject: Q14: What Technical Reports are available?

 Technical reports are informally published, unrefereed papers giving

 up-to-date information on what is going on at research institutes.

 Many later go on to be formally published in journals or at

 conferences.

 TCGA Reports

 The Clearing House for Genetic Algorithms (TCGA) at the Univ. of

 Alabama (Tuscaloosa) distributes TCGA technical reports. A number of

 these are now available in compressed Postscript form via FTP from:

 aramis.cs.ua.edu/pub/tech-reports/ Read the file README first.

 Contact: Robert Elliott Smith, Department of Engineering of

 Mechanics, Room 210 Hardaway Hall, The University of Alabama, P.O.

 Box 870278, Tuscaloosa, AL 35487, USA. Tel: (205) 348-1618,

 <rob@comec4.mh.ua.edu>, or Dr. Ron Sun <rsun@athos.cs.ua.edu>

 IlliGAL Reports

 The Illinois Genetic Algorithms Laboratory distributes IlliGAL

 technical reports, as well as reprints of other publications; they

 are available in hardcopy and can be ordered from: IlliGAL Librarian,

 Department of General Engineering, 117 Transportation Building, 104

 South Mathews Avenue, Urbana, IL 61801-2996, USA.

 <library@gal1.ge.uiuc.edu>

 NOTE: When ordering, please include your surface mail address!

 IlliGAL also have an anonymous-FTP server, holding most of the

 existing IlliGAL reports, at: gal4.ge.uiuc.edu/pub/papers/IlliGALs/

 There is also a WWW home page with a complete list, order form, and

 other information at: ftp://gal4.ge.uiuc.edu/illigal.home.html

 SyS Reports

 The Systems Analysis Research Group (SyS) at the University of

 Dortmund, maintains an experimental anonymous FTP server:

 lumpi.informatik.uni-dortmund.de/pub/ On lumpi you can find SyS-

 Reports from 1992 on. (Get "/pub/ls-Ral.Z" and look for "papers"

 folders, the server is sorted by EA paradigms, i.e. "/pub/GA/papers"

 contains papers related to GAs, etc.). A strongly recommended, and

 quarterly updated, report is a list of current applications of GAs,

 EP and ESs; get "/pub/EA/papers/ea-app.ps.gz" (SyS-2/92).

 Bionics Reports

 The Bionics and EVOLUTION Techniques Laboratory at the Technical

 University of Berlin maintains an anonymous FTP server: ftp-

 bionik.fb10.tu-berlin.de/pub/ On ftp-bionik you find reports and

 software, related to EVOLUTIONARY ALGORITHMs and Artificial Neural

 Networks.

 University College London Reports

 A number of GENETIC ALGORITHM reports produced by UCL are available

 via anonymous FTP at cs.ucl.ac.uk/genetic/papers/ Abstracts of others

 can be obtained via WWW at http://www.cs.ucl.ac.uk/rns/

 Other Sources of Reports

 Reports are also available from some of the sources listed in Q15.1,

 Q15.2 and Q15.3.

Subject: Q15: What information is available over the net?

 A whole lot of information is available "electronically" via the

 internet, accessible using e-mail or (more easily) FTP. There are

 electronic digests (see Q15.1), electronic mailing lists (see Q15.2),

 online FTP repositories (see Q15.3), and various USENET news groups

 (see Q15.4).

Subject: Q15.1: What digests are there?

 Digests are regulated, moderated, information sources in which many

 contributions are combined together before being posted out to

 subscribers, usually on a regular basis (eg. weekly). Mailing lists

 are listed in Q15.2.

 Genetic Algorithm Digest

 The GA research community exchanges news, CFP's, etc. through this

 (approximately weekly) digest, currently moderated by Bill Spears

 (formerly by Connie Ramsey and by Alan C. Schultz, Naval Research

 Laboratory, Washington, DC).

 A statistic published in v7,i3 stated that GA-digest is sent out

 world-wide to 1800 addresses in 28 countries. The digest is also

 posted to the comp.ai.genetic newsgroup.

 o Send administrative requests to <ga-list-REQUEST@aic.nrl.navy.mil>

 o The anonymous FTP archive: ftp.aic.nrl.navy.mil/pub/galist/

contains back issues, GA-code, conference announcements (in

"/pub/galist/information/conferences") and many other things.

Info in "/pub/galist/FTP".

 o The archive may also be accessed via the World Wide Web at

http://www.aic.nrl.navy.mil/galist Also, links are given to many

interesting sites around the World with material related to

EVOLUTIONARY COMPUTATION.

 Artificial Life Digest

 The ALIFE research community exchanges news, CFP's, etc. through this

 digest, edited by Liane Gabora and Rob Collins of the ARTIFICIAL LIFE

 Research Group at UCLA.

 o Send administrative requests to <alife-REQUEST@cognet.ucla.edu>

 o Anonymous FTP archive: ftp.cognet.ucla.edu/pub/alife/

 Evolutionary Programming Digest

 The digest is intended to promote discussions on a wide range of

 technical issues in evolutionary OPTIMIZATION, as well as provide

 information on upcoming conferences, events, journals, special

 issues, and other items of interest to the EP community. Discussions

 on all areas of EVOLUTIONARY COMPUTATION are welcomed, including

 ARTIFICIAL LIFE, EVOLUTION STRATEGIEs, and GENETIC ALGORITHMs. The

 digest is meant to encourage interdisciplinary communications. Your

 suggestions and comments regarding the digest are always welcome.

 To subscribe to the digest, send mail to <ep-list-

 REQUEST@magenta.me.fau.edu> and include the line "subscribe ep-list"

 in the body of the text. Further instructions will follow your

 subscription. The digest is moderated by N. Saravan of Florida

 Atlantic University.

Subject: Q15.2: What mailing lists are there?

 Mailing lists are unregulated, unmoderated, information sources in

 which messages sent in by subscribers are posted out immediately and

 individually to all other subscribers. Digests are listed in Q15.1.

 Genetic Programming Mailing List

 The GP community uses this list as a discussion forum, news exchange

 and FAQ distribution channel, originally set up by John Koza and

 James Rice at Stanford.

 o Admin requests: <genetic-programming-REQUEST@cs.stanford.edu>

 o The anonymous FTP archive includes a lengthy, but "mostly

interesting" FAQ by James Rice on GP related subjects. The archive

used to be held at ftp.io.com/pub/genetic-programming/ and a HTML

version used to be accessible at:

http://www.salford.ac.uk/docs/depts/eee/genetic.html but both

these sites have now gone (does anyone know where they are now?)

 Tierra Mailing List

 Thomas Ray's Tierra is discussed elsewhere (see Q4.1); here's how to

 obtain Tierra electronically and get in contact with other users.

 o Admin requests: <tierra-REQUEST@life.slhs.udel.edu>

 o Anonymous FTP archive: tierra.slhs.udel.edu/pub/ (tierra, almond,

beagle, etc.)

 UK's Evolutionary-Computation mailing list

 o Admin details: <evolutionary-computing-request@mailbase.ac.uk>

 GEnetic Algorithm Research Student mailing list

 Provides a forum for research students interested in GENETIC

 ALGORITHMs.

 o Admin requests: <gears-request@research.de.uu.net>

 GEARS articles can be viewed at:

 http://research.de.uu.net:8080/~gears/ while the old GEARS archive is

 kept at: http://research.de.uu.net:8080/~gears/archive/

 GANN: Genetic Algorithms and Neural Networks

 This list will focus on the use of EVOLUTIONARY ALGORITHMs (GENETIC

 ALGORITHMs, GENETIC PROGRAMMING and their variants) in the

 EXPLORATION of the design space of (artificial) neural network

 architectures and algorithms. The list will be semi-moderated to

 keep the signal to noise ratio as high as possible. (This list was

 formerly known as the neuro-evolution e-mail list.)

 o Admin requests/enquiries: gann-request@cs.iastate.edu

 o Subscription requests to the admin address with Subject:

subscribe

 gattbl: Timetabling mailing list

 This group is for people using GAs and other techniques for exam or

 course scheduling for academic institutions. To subscribe, send email

 to <ttp-request@cs.nott.ac.uk>.

 Evolutionary Models in the Social Sciences

 See Q10.8 for details.

 Genetic Algorithms in Production Scheduling

 The GASched list is for discussion of the use of GENETIC ALGORITHMs

 on Production Scheduling Problems (only). Possible subjects for the

 list include: GAs for job-shop scheduling theory, GAs for practical

 problem solving in industry, problem representation within the GA,

 combinatorial optimisation techniques for scheduling problems,

 results & effects of GA-based systems working in industry, techniques

 for improving performance, problem data, or any other burning issues

 which come into GAs for production scheduling.

 A full introduction can be obtained by mailing

 <listproc@sheffield.ac.uk> with no subject line and 'info

 gascheduling' in the body of the message.

 To subscribe to the list, email <listproc@sheffield.ac.uk> with the

 body of the message containing 'subscribe gascheduling YOUR NAME'.

 Please dont include anything else in the message, and leave the

 subject empty. For help on how to use the automated software, and

 some other commands which may be available in future, mail

 <listproc@sheffield.ac.uk> with 'HELP' in the body of your message,

 and no subject line.

 For non-standard administration requests, or if you are having

 problems with the automated address, please email: <gascheduling-

 request@sheffield.ac.uk> These messages will be dealt with manually,

 and so may take a couple of days for a response.

 There is also a related Web site at:

 http://www.shef.ac.uk/~gaipp/index.html

 Autopoiesis

 There is an Autopoiesis Email List for the discussion of the theory

 of Autopoiesis of H. Maturana and F. Varela. Autopoiesis means self-

 production and concerns self-organizing systems.

 To join send a message containing the text: SUB AUTOPOIESIS to

 <listserv@think.net>

 To see what other systems and philosophy lists exist at this site

 send the message: HELP instead.

Subject: Q15.3: What online information repositories are there?

 Many research institutes have online repositories of information

 which my be retrieved using FTP or HTTP (World Wide Web).

 NOTE: See also Q14 above.

 ENCORE

 ENCORE (The EvolutioNary COmputation REpository network) is a

 collection of FTP servers/World Wide Web sites providing a wealth of

 information in the area of EC, from technical reports, copies of

 journal articles, down to source code for various EAs. ENCORE acts

 as a distributor of much material generated at research institutes

 (and other places) which don't necessarily have their own FTP

 servers.

 Each node of Encore is referred to as an "EClair". There are numerous

 nodes around the world, all carrying copies of the same information.

 The sites may be accessed using FTP or WWW browsers. Sites offering

 HTTP access are the best to use if using a WWW browser. They include:

 o EUnet Deutschland GmbH (Germany):

http://research.de.uu.net:8080/encore/

o The University of Girona (Spain) http://gnomics.udg.es/~encore/

o The University of Granada (Spain):

http://krypton.ugr.es/~encore/

o The University of Birmingham (UK)

http://www.cs.bham.ac.uk/Mirrors/ftp.de.uu.net/EC/clife/

o The Santa Fe Institute (USA):

http://alife.santafe.edu/~joke/encore/

o Purdue University, West Lafayette, IN (USA):

http://www.cs.purdue.edu/coast/archive/clife/Welcome.html

o The Chinese University of Hong Kong:

http://www.cs.cuhk.hk/pub/EC/Welcome.html

 Other sites offer FTP access (slow if using WWW). If using FTP, omit

 the initial "ftp://" and the final "Welcome.html" in the file

 specification in order to access the top-level directory. The FTP

 sites include:

 o EUnet Deutschland GmbH (Germany):

ftp://ftp.de.uu.net/pub/research/softcomp/EC/Welcome.html

o Technical University of Berlin (Germany): ftp://ftp-

bionik.fb10.tu-berlin.de/pub/EC/Welcome.html

o Ecole Polytechnique, Palaiseau (France):

ftp://blanche.polytechnique.fr/pub/eark/EC/Welcome.html

o The University of Oviedo (Spain):

ftp://zeus.etsimo.uniovi.es/pub/EC/Welcome.html

o The Santa Fe Institute (USA): ftp://alife.santafe.edu/pub/USER-

AREA/EC/Welcome.html

o The California Institute of Technology (USA):

ftp://ftp.krl.caltech.edu/pub/EC/Welcome.html

o Wayne State University, Detroit (USA):

ftp://ftp.cs.wayne.edu/pub/EC/Welcome.html

o The Michigan State University, East Lansing (USA):

ftp://ftp.egr.msu.edu/pub/EC/Welcome.html

o Purdue University, West Lafayette, IN (USA):

ftp://coast.cs.purdue.edu/pub/EC/Welcome.html

o The Chinese University of Hong Kong:

ftp://ftp.cs.cuhk.hk/pub/EC/Welcome.html

o University of Cape Town (South Africa):

ftp://ftp.uct.ac.za/pub/mirrors/EC/Welcome.html

o Center of Technological Education of Parana, Curitiba (Brazil):

ftp://ftp.cefetpr.br/pub/EC/Welcome.html

 Well worth getting is "The Navigator's Guide to ENCORE", a handbook

 to this service, in file:

 o handbook/encore.ps.gz (A4 paper) or

 o handbook/encore-US.ps.gz (US letter size paper).

 Encore is administered by Joerg Heitkoetter <joke@de.uu.net>.

 The Santa Fe Institute

 The Santa Fe Institute Studies in the Sciences of Complexity (SFI)

 issues a recommended series: SFI Studies in the Science of

 Complexity, published by Addison Wesley and maintains a well-sorted

 FTP server with EC related material.

 o Admin requests: <ftp@santafe.edu>

 o Anonymous FTP archive: ftp.santafe.edu/pub/

 Information on SUMMERSCHOOLs held by the SFI can be obtained from:

 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.

 The Australian National University (ANU)

 The Bioinformatics facility at Australian National University has set

 up an anonymous FTP server, that contains EC related material,

 maintained by David G. Green.

 o Admin requests: <david.green@anu.edu.au>

 o Anonymous FTP archive: life.anu.edu.au/pub/complex_systems/alife/

 o World Wide Web: The hypermedia server offers introductory

tutorials, preprints and papers online. The URL for this service

is http://complex.csu.edu.au/complex or link via the servers home

page http://life.anu.edu.au/

 LGI laboratory, Grenoble, France

 Research into Parallel GENETIC ALGORITHMs: papers (technical reports,

 conference and journal articles, theses, monographies, etc...)

 written by members of the SYMPA team are available by FTP from

 o imag.fr/pub/SYMPA/

 Their adress is: SYMPA/LGI - Institut IMAG, BP 53 38041 Grenoble

 Cedex, FRANCE <muntean@imag.fr>

 The University of Alabama, Department of Computer Science

 A number of papers and preprints are available in compressed

 Postscript form by FTP from the Univ. of Alabama (Tuscaloosa) from

 aramis.cs.ua.edu/pub/tech-reports/ The naming convention for files

 is: (author's last name).(journal name).ps . Maintained by Dr. Ron

 Sun <rsun@athos.cs.ua.edu>

 CMU Artificial Intelligence Repository

 Holds more than a gigabyte of software, publications, and other

 materials of interest to AI researchers, educators, students, and

 practitioners. The AI Programming Languages and the AI Software

 Packages sections of the repository can be accessed in the lang/ and

 areas/ subdirectories. Other directories, which are in varying states

 of completion, are events/ and pubs/ (Publications, including

 technical reports, books, mail/news archives).

 The AI Programming Languages section includes directories for Common

 Lisp, Prolog, Scheme, Smalltalk, and other AI-related programming

 languages. The AI Software Packages section includes subdirectories

 for: alife/ (ARTIFICIAL LIFE), anneal/ (Simulated Annealing),

 genetic/ (GENETIC ALGORITHMs etc., including benchmarks and test

 problems) and many more.

 The AI Repository is accessible by FTP at: ftp.cs.cmu.edu/user/ai/

 (Be sure to read the files 0.doc and readme.txt in this directory)

 and by WWW at: http://www.cs.cmu.edu/Groups/AI/html/repository.html

 It is also available on CD-ROM (See Q10.10).

 The MSU Genetic Algorithms Research and Applications Group (GARAGe)

 GARAGe has a number of interesting projects, both in terms of GA and

 GP fundamental research and in GA/GP applications including:

 parallelization of GAs/GPs; multiple POPULATION topologies and

 interchange methodologies; scheduling applications, including

 sponsored research on job-floor scheduling; design applications,

 including sponsored research on composite material design;

 configuration applications, particularly physics applications of

 optimal molecule configurations for particular systems like C60

 (buckyballs) and others.

 Information on GARAGe research projects is available by WWW at the

 URL: http://GARAGe.cps.msu.edu

 School of Cognitive and Computing Sciences, University of Sussex

 The Evolutionary and Adaptive Systems Group in COGS does a

 significant amount of research in the area of GAs and Neural Networks

 and modeling the process of biological development. For purposes of

 artificial EVOLUTION, many at COGS see this as the major issue to be

 tackled. For general info about the group, consult the WWW server

 at: http://www.cogs.susx.ac.uk/lab/adapt/index.html

 The Navy Center for Applied Research in Artificial Intelligence

 The Navy Center for Applied Research in ARTIFICIAL INTELLIGENCE

 (NCARAI) is conducting basic research in the analysis of GAs and

 other EVOLUTIONARY ALGORITHMs. GAs are being applied to the learning

 of strategies and behaviors for autonomous vehicles, and for

 adaptively testing complex systems such as vehicle controllers. You

 will find description of projects, researchers, and downloadable

 papers at URL http://www.aic.nrl.navy.mil/ in addition to other

 information. The GA-digest and the GENETIC ALGORITHMs Archive are

 maintained at NCARAI. See Q15.1, "Genetic Algorithms Digest", for

 more information.

 Case Western Reserve University

 A WWW home page is available for the CWRU Autonomous Agents Research

 Group at: http://yuggoth.ces.cwru.edu/

 The group, led by Randall Beer, conducts interdisciplinary research

 in the departments of Computer Engineering and Science, Biology,

 Mechanical Engineering, and Systems Engineering. This research

 includes work in EVOLUTIONARY ALGORITHMs, mobile robotics, and

 computational biology. The aim is to study the mechanisms that can

 produce adaptive behavior in animals and ROBOTs.

 Currently available are Postscript versions of a number of our

 research papers (in particular, those related to mobile robotics,

 evolving recurrent neural networks, and computational models of

 development), an HTML version of a paper on computational development

 which appeared in ALIFE IV, and images of the robots used in our

 research.

 Comments to <yamauchi@alpha.ces.cwru.edu>

 Genetic Algorithms Group, George Mason University

 Members of the research group are working on a variety of projects

 including GA theory, coevolutionary algorithms, decentralized GAs,

 representation issues, evolutionary microeconomics, the application

 of GAs to molecular biology, and GA-based machine learning. There is

 an online publications list that contains links to PostScript copies

 of many of their published papers. A WWW home page is available at:

 http://www.cs.gmu.edu/research/gag/

 The Complexity and Artificial-Life Research Concept

 Includes a whole load of information on the topics of complexity,

 artificial-life, GAs, NNs, cellular automata, nonlinear science,

 fractals, self-organisation, evolution, and more. Visit:

 http://www.calresco.force9.co.uk

Subject: Q15.4: What relevant newsgroups and FAQs are there?

 Besides the obvious comp.ai.genetic there exist some other newsgroups

 that sometimes carry EC related topics:

 o comp.ai (FAQ in news.answers , comp.answers)

 o comp.ai.digest

 o comp.ai.fuzzy (FAQ in news.answers , comp.answers)

 o comp.ai.jair.announce (FAQ in news.answers , comp.answers)

 o comp.ai.jair.papers (PostScript papers of the Journal of AI

Research, published by Morgan Kaufmann <morgan@unix.sri.com>) [eds

note: this is the first journal that's completely published on

USENET first, and later in paper form; read the jair-faq, that's

posted to the announcement group to find out how to submit your

papers, get JAIR papers by FTP, Gopher or e-mail, etc.]

 o comp.ai.neural-nets (FAQ in news.answers , comp.answers)

 o comp.robotics (FAQ in news.answers , comp.answers)

 o comp.theory.cell-automata (FAQ in

http://alife.santafe.edu/alife/topics/cas/ca-faq/ca-faq.html)

 o comp.theory.dynamic-sys (no FAQ)

 o comp.theory.self-org-sys (no FAQ)

 o sci.bio.evolution (no FAQ as such, but there is an archive of

interesting material, accessible via WWW at

http://www.cqs.washington.edu/~evolution)

 o sci.math.num-analysis (some FAQs in news.answers , comp.answers)

 o sci.op-research (some FAQs in news.answers , comp.answers)

 o talk.origins (discusses origins of life, EVOLUTION, etc. FTP

repository index at ics.uci.edu/pub/origins/Index -- see Q10.7 for

more details.)

Subject: Q15.5: What about all these Internet Services?

 The Internet supports a variety of on-line services, and a number of

 tools are available to enable people to make good use of these,

 including: telnet, FTP, gopher, veronica, archie, Wide Area

 Information Servers (WAIS), and the World-Wide Web (WWW).

 Information about using Internet is available from a number of

 sources, many accesible on-line, via email or FTP. For example, the

 EFF (Electronic Frontier Foundation) publishes two guides for novices

 on all the Internet has to offer, by Adam Gaffin and Joerg

 Heitkoetter (see below). These are avaiable over the net.

 To receive a short guide to using anonymous FTP, send e-mail with the

 text "help" to <info@sunsite.unc.edu>.

 If you dont have FTP access, you can retrieve documents using the

 FTP-by-email service. The "ftpmail" service is installed on several

 sites to allow transmission of FTPable files from almost anywhere. To

 get the PostScript version of this FAQ from ENCORE, (See Q15.3) for

 example, send a message to (for example) <ftpmail@decwrl.dec.com>

 containing the lines:

 reply <your-own-e-mail-address-here>

 connect alife.santafe.edu

 get pub/USER-AREA/EC/FAQ/hhgtec.ps.gz

 quit

 where <your-e-mail-address> is e.g. foo@bar.edu

 FTPmail sites available are listed below. Use one that is near you

 for best performance.

 (USA) <ftpmail@decwrl.dec.com>

 <ftpmail@sunsite.unc.edu>

 <bitftp@pucc.princeton.edu>

 (Europe) <bitftp@dearn> or to <bitftp@vm.gmd.de>

 <ftpmail@ftp.uni-stuttgart.de>

 <ftpmail@ftp.inf.tu-dresden.de>

 <ftpmail@grasp.insa-lyon.fr>

 <bitftp@plearn.edu.pl>

 <ftpmail@doc.ic.ak.uk>

 Documents from the archive at <rtfm.mit.edu> can be retrieved

 similarly by sending email to <mail-server@rtfm.mit.edu>, containing

 a message such as:

 send usenet/news.answers/index

 send usenet/news.answers/ai-faq/genetic/part1

 quit

 References

 Kehoe, B.P. (1992) "Zen and the Art of the Internet: A Beginner's

 Guide to the Internet", 2nd Edition (July). Prentice Hall, Englewood

 Cliffs, NJ. 112 pages. The 1st Edition, (February) is available in

 PostScript format via anonymous FTP from ftp.cs.widener.edu: and many

 other Internet archives.

 Krol, E. (1992) "The Whole Internet: Catalog & User's Guide".

 O'Reilly & Associates, Inc., Sebastopol, CA. 376 pages.

 LaQuey, T. and J.C. Ryer (1992) "The Internet Companion: A Beginner's

 Guide to Global Networking". Addison-Wesley Publishing Co., Reading,

 MA. 208 pages.

 Smith, Una R. (1993) "A Biologist's Guide to Internet Resources."

 USENET sci.answers FTP and e-mail from many archives, eg.

 rtfm.mit.edu/pub/usenet/sci.answers/biology/guide/part?

 Gaffin, A. (1994) "Everybody's Guide to the Internet." Published by

 the EFF and MIT Press. $14.95. ISBN 9-780262-67105-7. This book is

 available in ASCII by sending e-mail to <netguide@eff.org>; you'll

 receive the book split into several pieces; for a more elaborate

 version of the guide see the following entry.

 Gaffin, A. with Heitkoetter, J. (1994) "EFF's (Extended) Guide to the

 Internet: A round trip through Global Networks, Life in Cyberspace,

 and Everything...", aka `eegtti.texi'. This is available from

 ftp.eff.org/pub/Net_info/Net_Guide/Other_versions/ (Texinfo, ASCII,

 HTML, DVI and PostScript). The European edition is kept on

 ftp.de.uu.net/pub/books/eff-guide/ ~300 pages. A README file gives

 more information. The hypertext (HTML) version can be browsed at:

 http://www.de.uu.net/books/eegtti/eegtti.html

 The EARN Association (May 1993) "A Guide to Network Resource Tools",

 available via e-mail from <listserv@EARNCC.bitnet>, by sending the

 message "get nettools ps" (PostScript) or "get nettools memo" (plain

 text).

 Copyright (c) 1993-1997 by J. Heitkoetter and D. Beasley, all rights

 reserved.

 This FAQ may be posted to any USENET newsgroup, on-line service, or

 BBS as long as it is posted in its entirety and includes this

 copyright statement. This FAQ may not be distributed for financial

 gain. This FAQ may not be included in commercial collections or

 compilations without express permission from the author.

Part 5

Subject: Q20: What EA software packages are available?

 This gives a list of all known EA software packages available to the

 public. The list was originally maintained by Nici Schraudolph. In

 June '93 it was agreed that it would be incorporated into this FAQ

 and the responsibility for maintenance taken over by the FAQ editor.

 A copy of most of the packages described below are kept at ENCORE,

 (See Q15.3), available by anonymous FTP.

 Most GENETIC PROGRAMMING software is available by FTP in:

 ftp.io.com/pub/genetic-programming/ There are subdirectories

 containing papers related to GP, archives of the mailing list, as

 well as a suite of programs for implementing GP. These programs

 include the Lisp code from Koza's "Genetic Programming" [KOZA92], as

 well as implementations in C and C++, as for example SGPC: Simple

 Genetic Programming in C by Walter Alden Tackett and Aviram Carmi

 <gpc@ipld01.hac.com>.

 A survey paper entitled "Genetic Algorithm Programming Environments"

 was published in IEEE Computer in the June 1994 issue. Written by

 Filho, Alippi and Treleaven of University College, London, UK. It's

 available by FTP as bells.cs.ucl.ac.uk/papagena/game/docs/gasurvey.ps

 (file size: 421k).

 PLEASE NOTE

 For many of these software packages, specific ordering instructions

 are given in the descriptions below (see Q20.1 - Free Software

 packages, Q20.2 - Commercial Software Packages, Q20.3 - Research

 Projects). Please read and follow them before unnecessarily

 bothering the listed author or contact! Also note that these

 programs haven't been independently tested, so there are no

 guarantees of their quality.

 A major revision was undertaken in August 1994, when all authors were

 contacted, and asked to confirm the accuracy of the information

 contained here. A few authors did not respond to the request for

 information. These are noted below by: (Unverified 8/94). In these

 cases, FTP address were checked by the FAQ editor, to confirm that

 this information (at least) is correct. In two cases, email to the

 author bounced back as "undeliverable" -- these are noted below.

 Legend

 Type (this is a very ad-hoc classification)

 GE: generational GA

 SS: steady-state GA

 PA: (pseudo) parallel GA

 ES: evolution strategy

 OO: object-oriented

 XP: expert system

 ED: educational/demo

 CF: classifier system

 OS Operating System; X11 implies Unix; "Win" means Microsoft

 Windows 3.x/NT (PC); "DOS" means MS-DOS or compatibles.

 Lang Programming Language; in parentheses: source code not included;

 "OPas" = MPW Object Pascal

 Price (circa 1994)

 (1) free to government contractors, $221 otherwise, (2)

 educational discount available, (3) available as addendum to a

 book, (4) single 1850 DM, site license 5200 DM, (5) single 200

 DM, site license 500 DM, (6) free for academic and educational

 use.

 Author or Contact

 given as Internet e-mail address if possible

 ES/GA/XP System Implementations:

 ===

 Name Type OS Lang Price Author/Contact

 ===

 BUGS GE, X11, C free Joshua Smith

 ED Suntools <jrs@media.mit.edu>

 Computer- ED, Win ? free Scott Kennedy, Axcelis Inc.

 Ants GA <staff@axcelis.com>

 DGenesis GE, Unix C free Erick Cantu-Paz

 PA,ED <ecantu@lamport.rhon.itam.mx>

 DOUGAL SS, DOS Turbo free Brett Parker

 GE Pascal <b.s.parker@durham.ac.uk>

 Ease GE, Unix Tcl free Joachim Sprave

 ES <sprave@LS11.cs.uni-dortmund.de>

 ESCaPaDE ES Unix C free Frank Hoffmeister

<hoffmeister@ls11.informatik.uni-dortmund.de>

 Evolution GE, DOS C free Hans-Michael Voigt and

 Machine ES Joachim Born

 <voigt@max.fb10.tu-berlin.de>

 Evolutionary GE, Unix C++ free JJ Merelo

 Objects OO <jmerelo@kal-el.ugr.es>

 GAC, GE Unix C free Bill Spears

 GAL " " Lisp " <spears@aic.nrl.navy.mil>

 GAGA GE Unix C free Jon Crowcroft

 <jon@cs.ucl.ac.uk>

 GAGS GE, Unix, C++ free JJ Merelo

 SS,OO DOS <jmerelo@kal-el.ugr.es>

 GAlib GA Unix, C++ free Matthew Wall

 Mac,DOS <mbwall@mit.edu>

 GALOPPS GE, Unix, C free Erik Goodman

 PA DOS <goodman@egr.msu.edu>

 GAMusic ED Win (VB) $10 Jason H. Moore

 <jhm@superh.hg.med.umich.edu>

 GANNET GE, Unix C free Darrell Duane

 NN <dduane@fame.gmu.edu>

 GAucsd GE Unix C free Nici Schraudolph

 <GAucsd-request@cs.ucsd.edu>

 GA GE, DOS (C++) free Mark Hughes

 Workbench ED <mrh@i2ltd.demon.co.uk>

 GECO GE, Unix, Lisp free George P. W. Williams, Jr.

OO,ED MacOS <george@hsvaic.hv.boeing.com>

 Genesis GE, Unix, C free John Grefenstette

 ED DOS <gref@aic.nrl.navy.mil>

 GENEsYs GE Unix C free Thomas Baeck

 <baeck@ls11.informatik.uni-dortmund.de>

 GenET SS, Unix, C free Cezary Z. Janikow

ES,ED X, etc. <janikow@radom.umsl.edu>

 Genie GE Mac Think free Lance Chambers

 Pascal <pstamp@yarrow.wt.uwa.edu.au>

 Genitor SS Unix C free Darrell Whitley

 <whitley@cs.colostate.edu>

 GENlib SS Unix, C (6) Jochen Ruhland

 DOS <jochenr@neuro.informatik.uni-kassel.de>

 GENOCOP GE Unix C free Zbigniew Michalewicz

 <zbyszek@uncc.edu>

 GIGA SS Unix C free Joe Culberson

 <joe@cs.ualberta.ca>

 GPEIST GP Win, Small- free Tony White

 OS/2 talk <arpw@bnr.ca>

 Imogene GP Win C++ free Harley Davis

 <davis@ilog.fr>

 JAG GA - Java free Stephen Hartley

 <shartley@mcs.drexel.edu>

 LibGA GE, Unix/DOS C free Art Corcoran

 SS,ED NeXT/Amiga <corcoran@penguin.mcs.utulsa.edu>

 LICE ES Unix, C free Joachim Sprave

 DOS <joe@ls11.informatik.uni-dortmund.de>

 Matlab-GA GE ? Matlab free Andy Potvin

 <potvin@mathworks.com>

 mGA GE Unix C, free Dave Goldberg

 Lisp <goldberg@vmd.cso.uiuc.edu>

 PARAGenesis PA, CM C* free Michael van Lent

 GE <vanlent@eecs.umich.edu>

 PGA PA, Unix, C free Peter Ross

SS,GE etc. <peter@aisb.ed.ac.uk>

 PGAPack GA, any C free David Levine

 PA <levine@mcs.anl.gov>

 REGAL GA C free Filippo Neri

 <neri@di.unito.it>

 SGA-C, GE Unix C free Robert E. Smith

 SGA-Cube nCube <rob@comec4.mh.ua.edu>

 Splicer GE Mac, C (1) Steve Bayer

 X11

 TOLKIEN OO, Unix, C++ free Anthony Yiu-Cheung Tang

 GE DOS <tang028@cs.cuhk.hk>

 Trans-Dimensional

 Learning NN Win ? free <upso@prodigy.com>

 WOLF SS Unix C free David Rogers

 <drogers@msi.com>

 ===

 Classifier System Implementations:

 ===

 Name Type OS Lang Price Author/Contact

 ===

 CFS-C CF, Unix/DOS C free Rick Riolo

ED <rlr@merit.edu>

 SCS-C CF, Unix/DOS C free Joerg Heitkoetter

ED Atari TOS <joke@de.uu.net>

 ==

 Commercial Packages:

 ===

 Name Type OS Lang Price Author/Contact

 ===

 ActiveGA GA Win (ActiveX) $99 Brightwater Software

 <support@brightsoft.com>

 EnGENEer OO, X11 C ? George Robbins,

GA Logica Cambridge Ltd.

 EvoFrame/ OO, Mac, C++/ (4,2) Optimum Software

 REALizer ES DOS OPas (5,2) <optimum@applelink.apple.com>

 Evolver GE DOS, (C, UKP350 Palisade

 Mac Pascal) <sales@palisade-europe.com>

 FlexTool GA Win Matlab ? Flexible Intelligence Group

 <info@flextool.com>

 GAME OO, X11 C++ (3) Jose R. Filho

GA <zeluiz@cs.ucl.ac.uk>

 GeneHunter GA Win, (VB) $369 Ward Systems

 Excel <wardsystems@msn.com>

 Generator GE,SS Win, (C++) $379 Steve McGrew, New Light Industries

 ES,OO,ED Excel <nli@comtch.iea.com>

 MicroGA/ OO, Mac, C++ $249 Emergent Behavior, Inc.

 Galapagos SS Win (2) <emergent@aol.com>

 Omega ? DOS ? ? David Barrow, KiQ Ltd.

 OOGA OO, Mac, Lisp $60 Lawrence Davis

GE DOS

 PC/Beagle XP DOS ? 69UKP Richard Forsyth

 XpertRule/XP DOS (Think 995UKP Attar Software

 GenAsys Pascal) <100116.1547@compuserve.com>

 XYpe SS Mac (C) $725 Ed Swartz, Virtual Image Inc.

 ===

Subject: Q20.1: Free software packages?

 BUGS:

 BUGS (Better to Use Genetic Systems) is an interactive program for

 demonstrating the GENETIC ALGORITHM and is written in the spirit of

 Richard Dawkins' celebrated Blind Watchmaker software. The user can

 play god (or `GA FITNESS function,' more accurately) and try to

 evolve lifelike organisms (curves). Playing with BUGS is an easy way

 to get an understanding of how and why the GA works. In addition to

 demonstrating the basic GENETIC OPERATORs (SELECTION, CROSSOVER, and

 MUTATION), it allows users to easily see and understand phenomena

 such as GENETIC DRIFT and premature convergence. BUGS is written in C

 and runs under Suntools and X Windows.

 BUGS was written by Joshua Smith <jrs@media.mit.edu> at Williams

 College and is available from

 www.aic.nrl.navy.mil/pub/galist/src/BUGS.tar.Z Note that it is

 unsupported software, copyrighted but freely distributable. Address:

 Room E15-492, MIT Media Lab, 20 Ames Street, Cambridge, MA 02139.

 (Unverified 8/94).

 ComputerAnts:

 ComputerAnts is a free Windows program that teaches principles of

 GENETIC ALGORITHMs by breeding a colony of ants on your computer

 screen. Users create ants, food, poison, and set CROSSOVER and

 MUTATION rates. Then they watch the colony slowly evolve. Includes

 extensive on-line help and tutorials on genetic algorithms. For

 further information or to download, information used to be available

 at http://www.axcelis.com but this site doesnt exist any more. If

 anyone knows the new location, please let us know.

 DGenesis:

 DGenesis is a distributed implementation of a Parallel GA. It is

 based on Genesis 5.0. It runs on a network of UNIX workstations. It

 has been tested with DECstations, microVAXes, Sun Workstations and

 PCs running 386BSD 0.1. Each subpopulation is handled by a UNIX

 process and the communication between them is accomplished using

 Berkeley sockets. The system is programmed in C and is available free

 of charge by anonymous FTP from lamport.rhon.itam.mx:/ and from

 ftp.aic.nrl.navy.mil/pub/galist/src/ga/dgenesis-1.0.tar.Z

 DGenesis allows the user to set the MIGRATION interval, the migration

 rate and the topology between the SUB-POPULATIONs. There has not

 been much work investigating the effect of the topology on the

 PERFORMANCE of the GA, DGenesis was written specifically to encourage

 experimentation in this area. It still needs many refinements, but

 some may find it useful.

 Contact Erick Cantu-Paz <ecantu@lamport.rhon.itam.mx> at the

 Instituto Tecnologico Autonomo de Mexico (ITAM)

 Dougal:

 DOUGAL is a demonstration program for solving the TRAVELLING SALESMAN

 PROBLEM using GAs. The system guides the user through the GA,

 allowing them to see the results of altering parameters relating to

 CROSSOVER, MUTATION etc. The system demonstrates graphicaly the

 OPTIMIZATION of the route. The options open to the user to

 experiment with include percentage CROSSOVER and MUTATION, POPULATION

 size, steady state or generational replacement, FITNESS technique

 (linear normalised, is evaluation, etc).

 DOUGAL requires an IBM compatible PC with a VGA monitor. The

 software is free, however I would appreciate feedback on what you

 think of the software.

 Dougal is available by FTP from ENCORE (see Q15.3) in file

 EC/GA/src/dougal.zip It's pkzipped and contains executable, vga

 driver, source code and full documentation. It is important to place

 the vga driver (egavga.bgi) in the same directory as DOUGAL. Author:

 Brett Parker, 7 Glencourse, East Boldon, Tyne + Wear, NE36 0LW,

 England. <b.s.parker@durham.ac.uk>

 Ease:

 Ease - Evolutionary Algorithms Scripting Environment - is an

 extension to the Tcl scripting language, providing commands to

 create, modify, and evaluate POPULATIONs of INDIVIDUALs represented

 by real number vectors and/or bit strings. With Ease, a standard ES

 or GA can be written in less than 20 lines of code.

 Ease is available as source code for Linux and Solaris under the GNU

 Public License. Tcl version 8.0 or higher is required. If you know

 how generate DLLs, you may be able to use it on Win9x/NT, as well.

 The URL is http://ls11-www.cs.uni-dortmund.de/~joe/Ease/Ease.html .

 ESCaPaDE:

 ESCaPaDE is a sophisticated software environment to run experiments

 with EVOLUTIONARY ALGORITHMs, such as e.g. an EVOLUTION STRATEGY.

 The main support for experimental work is provided by two internal

 tables: (1) a table of objective functions and (2) a table of so-

 called data monitors, which allow easy implementation of functions

 for monitoring all types of information inside the Evolutionary

 Algorithm under experiment.

 ESCaPaDE 1.2 comes with the KORR implementation of the evolution

 strategy by H.-P. Schwefel which offers simple and correlated

 MUTATIONs. KORR is provided as a FORTRAN 77 subroutine, and its

 cross-compiled C version is used internally by ESCaPaDE.

 An extended version of the package was used for several

 investigations so far and has proven to be very reliable. The

 software and its documentation is fully copyrighted although it may

 be freely used for scientific work; it requires 5-6 MB of disk space.

 In order to obtain ESCaPaDE, please send a message to the e-mail

 address below. The SUBJECT line should contain 'help' or 'get

 ESCaPaDE'. (If the subject lines is invalid, your mail will be

 ignored!). For more information contact: Frank Hoffmeister, Systems

 Analysis Research Group, LSXI, Department of Computer Science,

 University of Dortmund, D-44221 Dortmund, Germany. Net:

 <hoffmeister@ls11.informatik.uni-dortmund.de>

 Evolution Machine:

 The Evolution Machine (EM) is universally applicable to continuous

 (real-coded) OPTIMIZATION problems. In the EM we have coded

 fundamental EVOLUTIONARY ALGORITHMs (GENETIC ALGORITHMs and EVOLUTION

 STRATEGIEs), and added some of our approaches to evolutionary search.

 The EM includes extensive menu techniques with:

 o Default parameter setting for unexperienced users.

 o Well-defined entries for EM-control by freaks of the EM, who

want to leave the standard process control.

 o Data processing for repeated runs (with or without change of the

strategy parameters).

 o Graphical presentation of results: online presentation of the

EVOLUTION progress, one-, two- and three-dimensional graphic

output to analyse the FITNESS function and the evolution process.

 o Integration of calling MS-DOS utilities (Turbo C).

 We provide the EM-software in object code, which can be run on PC's

 with MS-DOS and Turbo C, v2.0, resp. Turbo C++,v1.01. The Manual to

 the EM is included in the distribution kit.

 The EM software is available by FTP from ftp-bionik.fb10.tu-

 berlin.de/pub/software/Evolution-Machine/ This directory contains the

 compressed files em_tc.exe (Turbo C), em_tcp.exe (Turbo C++) and

 em_man.exe (the manual). There is also em-man.ps.Z, a compressed

 PostScript file of the manual. If you do not have FTP access, please

 send us either 5 1/4 or 3 1/2 MS-DOS compatible disks. We will return

 them with the compressed files (834 kB).

 Official contact information: Hans-Michael Voigt or Joachim Born,

 Technical University Berlin, Bionics and evolution Techniques

 Laboratory, Bio- and Neuroinformatics Research Group, Ackerstrasse

 71-76 (ACK1), D-13355 Berlin, Germany. Net: <voigt@fb10.tu-

 berlin.de>, <born@fb10.tu-berlin.de> (Unverified 8/94).

 EVOLUTIONARY OBJECTS:

 EO (Evolutionary Objects) is a C++ library written and designed to

 allow a variety of evolutionary algorithms to be constructed easily.

 It is intended to be an "Open source" effort to create the definitive

 EC library. It has: a mailing list, anon-CVS access, frequent

 snapshots and other features. For details, see http://fast.to/EO

 Maintained by J.J. Merelo, Grupo Geneura, Univ. Granada <jmerelo@kal-

 el.ugr.es>

 GA Workbench:

 A mouse-driven interactive GA demonstration program aimed at people

 wishing to show GAs in action on simple FUNCTION OPTIMIZATIONs and to

 help newcomers understand how GAs operate. Features: problem

 functions drawn on screen using mouse, run-time plots of GA

 POPULATION distribution, peak and average FITNESS. Useful population

 STATISTICS displayed numerically, GA configuration (population size,

 GENERATION gap etc.) performed interactively with mouse.

 Requirements: MS-DOS PC, mouse, EGA/VGA display.

 Available by FTP from the simtel20 archive mirrors, e.g. wsmr-

 simtel20.army.mil/pub/msdos/neurlnet/gaw110.zip or

 wuarchive.wustl.edu: or oak.oakland.edu: Produced by Mark Hughes

 <mrh@i2ltd.demon.co.uk>. A windows version is in preparation.

 GAC, GAL:

 Bill Spears <spears@aic.nrl.navy.mil> writes: These are packages I've

 been using for a few years. GAC is a GA written in C. GAL is my

 Common Lisp version. They are similar in spirit to John

 Grefenstette's Genesis, but they don't have all the nice bells and

 whistles. Both versions currently run on Sun workstations. If you

 have something else, you might need to do a little modification.

 Both versions are free: All I ask is that I be credited when it is

 appropriate. Also, I would appreciate hearing about improvements!

 This software is the property of the US Department of the Navy.

 The code will be in a "shar" format that will be easy to install.

 This code is "as is", however. There is a README and some

 documentation in the code. There is NO user's guide, though (nor am I

 planning on writing one at this time). I am interested in hearing

 about bugs, but I may not get around to fixing them for a while.

 Also, I will be unable to answer many questions about the code, or

 about GAs in general. This is not due to a lack of interest, but due

 to a lack of free time!

 Available by FTP from

 ftp.aic.nrl.navy.mil/pub/galist/src/ga/GAC.shar.Z and GAL.shar.Z .

 PostScript versions of some papers are under "/pub/spears". Feel

 free to browse.

 GAGA:

 GAGA (GA for General Application) is a self-contained, re-entrant

 procedure which is suitable for the minimization of many "difficult"

 cost functions. Originally written in Pascal by Ian Poole, it was

 rewritten in C by Jon Crowcroft. GAGA can be obtained by request from

 the author: Jon Crowcroft <jon@cs.ucl.ac.uk>, Univeristy College

 London, Gower Street, London WCIE 6BT, UK, or by FTP from

 ftp://cs.ucl.ac.uk/darpa/gaga.shar

 GAGS:

 GAGS (Genetic Algorithms from Granada, Spain) is a library and

 companion programs written and designed to take the heat out of

 designing a GENETIC ALGORITHM. It features a class library for

 genetic algorithm programming, but, from the user point of view, is a

 genetic algorithm application generator. Just write the function you

 want to optimize, and GAGS surrounds it with enough code to have a

 genetic algorithm up and running, compiles it, and runs it. GAGS Is

 written in C++, so that it can be compiled in any platform running

 this GNU utility. It has been tested on various machines.

 Documentation is available.

 GAGS includes:

 o Steady-state, roulette-wheel, tournament and elitist SELECTION.

 o FITNESS evaluation using training files.

 o Graphics output through gnuplot.

 o Uniform and 2-point CROSSOVER, and bit-flip and gene-transposition

MUTATION.

 o Variable length CHROMOSOMEs and related operators.

 The application generator gags.pl is written in perl, so this

 language must also be installed before GAGS. Available from:

 http://kal-el.ugr.es/GAGS The programmer's manual is in the file

 gagsprogs.ps.gz. GAGS is also available from ENCORE (see Q15.3) in

 file EC/GA/src/gags-0.92.tar.gz (there may be a more recent version)

 with documentation in EC/GA/docs/gagsprog.ps.gz

 Maintained by J.J. Merelo, Grupo Geneura, Univ. Granada <jmerelo@kal-

 el.ugr.es>

 GAlib:

 GAlib is a C++ library that provides the application programmer with

 a set of GENETIC ALGORITHM objects. With GAlib you can add GA

 OPTIMIZATION to your program using any data representation and

 standard or custom SELECTION, CROSSOVER, MUTATION, scaling, and

 replacement, and termination methods. View the documentation on-line

 at http://lancet.mit.edu/ga/ There you will find a complete

 description of the programming interface, features, and examples.

 The canonical source for this library is the FTP site:

 lancet.mit.edu/pub/ga/ This directory contains UNIX (.tar.gz), MacOS

 (.sea.hqx), and DOS (.zip) versions of the GA library. Once you have

 downloaded the file, uncompress and extract it. It will expand to

 its own directory. If you extract the DOS version be sure to use the

 -d option to keep everything in one directory.

 GAlib requires a cfront 3.0 compatible C++ compiler. It has been

 used on the following systems: SGI IRIX 4.0.x (Cfront); SGI IRIX 5.x

 (DCC 1.0, g++ 2.6.8, 2.7.0); IBM RSAIX 3.2 (g++ 2.6.8, 2.7.0); DEC

 MIPS ultrix 4.2 (g++ 2.6.8, 2.7.0); SUN SOLARIS 5.3 (g++ 2.6.8,

 2.7.0); HP-UX (g++); MacOS (MetroWerks CodeWarrior 5); MacOS

 (Symantec THINK C++ 7.0); DOS/Windows (Borland Turbo C++ 3.0).

 Maintained by: Matthew Wall <mbwall@mit.edu>

 GALOPPS:

 GALOPPS (Genetic Algorithm Optimized for Portability and Parallelism)

 is a general-purpose parallel GENETIC ALGORITHM system, written in

 'C', organized like Goldberg's "Simple Genetic Algorithm". User

 defines objective function (in template furnished) and any callback

 functions desired (again, filling in template); can run one or many

 subpopulations, on one or many PC's, workstations, Mac's, MPP. Runs

 interactively (GUI or answering questions) or from files, makes file

 and/or graphical output. Runs easily interrupted and restarted, and

 a PVM version for Unix networks even moves processes automatically

 when workstations become busy. (Note: optional GUI requires Tcl/Tk.)

 14 example problems included (De Jong Functions, Royal Road, BTSP,

 etc.)

 User may choose:

 o problem type (permutation or value-type)

 o field sizes (arbitrary, possibly unequal, heeded by CROSSOVER,

MUTATION)

 o among 7 crossover types and 4 mutation types (or define own)

 o among 6 SELECTION types, including "automatic" option based on

Boltzmann scaling and Shapiro and Pruegel-Bennett statist.

Mechanics stuff

 o operator probabilities, FITNESS scaling, amount of output,

MIGRATION frequency and patterns,

 o stopping criteria (using "standard" convergence STATISTICS, etc.)

 o the GGA (Grouping Genetic Algorithm) REPRODUCTION and operators of

Falkenauer

 GALOPPS allows and supports:

 o use of a different representation in each subpopulation, with

transformation of migrants

 o INVERSION on level of subpopulations, with automatic handling of

differing field sizes, migrants

 o control over replacement by OFFSPRING, including DeJong crowding

or random replacement or SGA-like replacement of PARENTs

 o mate selection, using incest reduction

 o migrant selection, using incest reduction, and/or DeJong crowding

into receiving subpopulation

 o optional ELITISM

 Generic (Unix) GALOPPS 3.2 (includes 80-pp. manual) is available on

 ENCORE. For PVM GALOPPS, PC version (different line endings,

 makefiles), Threaded GALOPPS, and GALOPPS-based 2-level adaptive

 system, see the MSU GARAGe web site: http://GARAGe.cps.msu.edu/ .

 Contact: Erik D. Goodman, <goodman@egr.msu.edu>, MSU GARAGe, Case

 Center, 112 Engineering Building, MSU, East Lansing, MI 48824 USA.

 GAMusic:

 GAMusic 1.0 is a user-friendly interactive demonstration of a simple

 GA that evolves musical melodies. Here, the user is the FITNESS

 function. Melodies from the POPULATION can be played and then

 assigned a fitness. Iteration, RECOMBINATION frequency and MUTATION

 frequency are all controlled by the user. This program is intended

 to provide an introduction to GAs and may not be of interest to the

 experienced GA programmer.

 GAMusic was programmed with Microsoft Visual Basic 3.0 for Windows

 3.1x. No special sound card is required. GAMusic is distributed as

 shareware (cost $10) and can be obtained by FTP from

 wuarchive.wustl.edu/pub/MSDOS_UPLOADS/GenAlgs/gamusic.zip or from

 fly.bio.indiana.edu/science/ibmpc/gamusic.zip The program is also

 available from the America Online archive.

 Contact: Jason H. Moore <jhm@superh.hg.med.umich.edu> or

 <jasonUMICH@aol.com>

 GANNET:

 GANNET (Genetic Algorithm / Neural NETwork) is a software package

 written by Jason Spofford in 1990 which allows one to evolve binary

 valued neural networks. It offers a variety of configuration options

 related to rates of the GENETIC OPERATORs. GANNET evolves nets based

 upon three FITNESS functions: Input/Output Accuracy, Output

 'Stability', and Network Size.

 The evolved neural network presently has a binary input and binary

 output format, with neurodes that have either 2 or 4 inputs and

 weights ranging from -3 to +4. GANNET allows for up to 250 neurons

 in a net. Research using GANNET is continuing.

 GANNET 2.0 is available at http://fame.gmu.edu/~dduane/thesis

 . As well as the software, the masters thesis that utilized this

 program as well as a paper is available in this directory. See also

 fame.gmu.edu/gannet/source/

 The major enhancement of version 2.0 is the ability to recognize

 variable length binary strings, such as those that would be generated

 by a finite automaton. Included is code for calculating the

 Effective Measure Complexity (EMC) of finite automata as well as code

 for generating test data.

 A mailing list has been established for discussing uses and problems

 with the GANNET software. To subscribe, send a message to:

 <listproc@gmu.edu> On the first line of the message (not the subject)

 type: SUB GANNET Your-First-Name Your-Last-Name

 Contact: Darrell Duane or Dr. Kenneth Hintz, George Mason University,

 Dept. of Electrical & Computer Engineering, Mail Stop 1G5, 4400

 University Drive, Fairfax, VA 22033-4444 USA. Net:

 <dduane@fame.gmu.edu> or <khintz@fame.gmu.edu>

 GAucsd:

 GAucsd is a Genesis-based GA package incorporating numerous bug fixes

 and user interface improvements. Major additions include a wrapper

 that simplifies the writing of evaluation functions, a facility to

 distribute experiments over networks of machines, and Dynamic

 Parameter Encoding, a technique that improves GA PERFORMANCE in

 continuous SEARCH SPACEs by adaptively refining the genomic

 representation of real-valued parameters.

 GAucsd was written in C for Unix systems, but the central GA engine

 is easily ported to other platforms. The entire package can be ported

 to systems where implementations of the Unix utilities "make", "awk"

 and "sh" are available.

 GAucsd is available by FTP from cs.ucsd.edu/pub/GAucsd/GAucsd14.sh.Z

 or from ftp.aic.nrl.navy.mil/pub/galist/src/ga/GAucsd14.sh.Z To be

 added to a mailing list for bug reports, patches and updates, send

 "add GAucsd" to <listserv@cs.ucsd.edu>.

 Cognitive Computer Science Research Group, CSE Department, UCSD 0114,

 La Jolla, CA 92093-0114, USA. Net: <GAucsd-request@cs.ucsd.edu>

 GECO:

 GECO (Genetic Evolution through Combination of Objects) is an

 extensible, object-oriented framework for prototyping GENETIC

 ALGORITHMs in Common Lisp. GECO makes extensive use of CLOS, the

 Common Lisp Object System, to implement its functionality. The

 abstractions provided by the classes have been chosen with the intent

 both of being easily understandable to anyone familiar with the

 paradigm of genetic algorithms, and of providing the algorithm

 developer with the ability to customize all aspects of its operation.

 It comes with extensive documentation, in the form of a PostScript

 file, and some simple examples are also provided to illustrate its

 intended use.

 GECO Version 2.0 is available by FTP. See the file

 ftp.aic.nrl.navy.mil/pub/galist/src/ga/GECO-v2.0.README for more

 information.

 George P. W. Williams, Jr., 1334 Columbus City Rd., Scottsboro, AL

 35768. Net: <george@hsvaic.hv.boeing.com>.

 Genesis:

 Genesis is a generational GA system written in C by John

 Grefenstette. As the first widely available GA program Genesis has

 been very influential in stimulating the use of GAs, and several

 other GA packages are based on it. Genesis is available together with

 OOGA (see below), or by FTP from

 ftp.aic.nrl.navy.mil/pub/galist/src/genesis.tar.Z (Unverified 8/94).

 GENEsYs:

 GENEsYs is a Genesis-based GA implementation which includes

 extensions and new features for experimental purposes, such as

 SELECTION schemes like linear ranking, Boltzmann, (mu,

 lambda)-selection, and general extinctive selection variants,

 CROSSOVER operators like n-point and uniform crossover as well as

 discrete and intermediate RECOMBINATION. SELF-ADAPTATION of MUTATION

 rates is also possible.

 A set of objective functions is provided, including De Jong's

 functions, complicated continuous functions, a TSP-problem, binary

 functions, and a fractal function. There are also additional data-

 monitoring facilities such as recording average, variance and skew of

 OBJECT VARIABLES and mutation rates, or creating bitmap-dumps of the

 POPULATION.

 GENEsYs 1.0 is available via FTP from lumpi.informatik.uni-

 dortmund.de/pub/GA/src/GENEsYs-1.0.tar.Z The documentation alone is

 available as /pub/GA/docs/GENEsYs-1.0-doc.tar.Z

 For more information contact: Thomas Baeck, Systems Analysis Research

 Group, LSXI, Department of Computer Science, University of Dortmund,

 D-44221 Dortmund, Germany. Net: <baeck@ls11.informatik.uni-

 dortmund.de> (Unverified 8/94).

 GenET:

 GenET is a "generic" GA package. It is generic in the sense that all

 problem independent mechanisms have been implemented and can be used

 regardless of application domain. Using the package forces (or

 allows, however you look at it) concentration on the problem: you

 have to suggest the best representation, and the best operators for

 such space that utilize your problem-specific knowledge. You do not

 have to think about possible GA models or their implementation.

 The package, in addition to allowing for fast implementation of

 applications and being a natural tool for comparing different models

 and strategies, is intended to become a depository of representations

 and operators. Currently, only floating point representation is

 implemented in the library with few operators.

 The algorithm provides a wide selection of models and choices. For

 example, POPULATION models range from generational GA, through

 steady-state, to (n,m)-EP and (n,n+m)-EP models (for arbitrary

 problems, not just parameter OPTIMIZATION). (Some are not finished

 at the moment). Choices include automatic adaptation of operator

 probabilities and a dynamic ranking mechanism, etc.

 Even though the implementation is far from optimal, it is quite

 efficient - implemented in ATT's C++ (3.0) (functional design) and

 also tested on gcc. Along with the package you will get two

 examples. They illustrate how to implement problems with

 heterogeneous and homogeneous structures, with explicit rep/opers and

 how to use the existing library (FP). Very soon I will place there

 another example - our GENOCOP operators for linearly constrained

 optimization. One more example soon to appear illustrates how to

 deal with complex structures and non-stationary problems - this is a

 fuzzy rule-based controller optimized using the package and some

 specific rep/operators.

 If you start using the package, please send evaluations (especially

 bugs) and suggestions for future versions to the author.

 GenET Version 1.00 is available by FTP from

 radom.umsl.edu/var/ftp/GenET.tar.Z To learn more, you may get the

 User's Manual, available in compressed postscript in

 "/var/ftp/userMan.ps.Z". It also comes bundled with the complete

 package.

 Cezary Z. Janikow, Department of Math and CS, CCB319, St. Louis, MO

 63121, USA. Net: <janikow@radom.umsl.edu>

 Genie:

 Genie is a GA-based modeling/forecasting system that is used for

 long-term planning. One can construct a model of an ENVIRONMENT and

 then view the forecasts of how that environment will evolve into the

 future. It is then possible to alter the future picture of the

 environment so as to construct a picture of a desired future (I will

 not enter into arguments of who is or should be responsible for

 designing a desired or better future). The GA is then employed to

 suggest changes to the existing environment so as to cause the

 desired future to come about.

 Genie is available free of charge via e-mail or on 3.5'' disk from:

 Lance Chambers, Department of Transport, 136 Stirling Hwy, Nedlands,

 West Australia 6007. Net: <pstamp@yarrow.wt.uwa.edu.au> It is also

 available by FTP from hiplab.newcastle.edu.au/pub/Genie&Code.sea.Hqx

 Genitor:

 "Genitor is a modular GA package containing examples for floating-

 point, integer, and binary representations. Its features include many

 sequencing operators as well as subpopulation modeling.

 The Genitor Package has code for several order based CROSSOVER

 operators, as well as example code for doing some small TSPs to

 optimality.

 We are planning to release a new and improved Genitor Package this

 summer (1993), but it will mainly be additions to the current package

 that will include parallel island models, cellular GAs, delta coding,

 perhaps CHC (depending on the legal issues) and some other things we

 have found useful."

 Genitor is available from Colorado State University Computer Science

 Department by FTP from ftp.cs.colostate.edu/pub/GENITOR.tar

 Please direct all comments and questions to

 <mathiask@cs.colostate.edu>. If these fail to work, contact: L.

 Darrell Whitley, Dept. of Computer Science, Colorado State

 University, Fort Collins, CO 80523, USA. Net:

 <whitley@cs.colostate.edu> (Unverified 8/94).

 GENlib:

 GENlib is a library of functions for GENETIC ALGORITHMs. Included

 are two applications of this library to the field of neural networks.

 The first one called "cosine" uses a genetic algorithm to train a

 simple three layer feed-Forward network to work as a cosine-function.

 This task is very difficult to train for a backprop algorithm while

 the genetic algorithm produces good results. The second one called

 "vartop" is developing a Neural Network to perform the XOR-function.

 This is done with two genetic algorithms, the first one develops the

 topology of the network, the second one adjusts the weights.

 GENlib may be obtained by FTP from ftp.neuro.informatik.uni-

 kassel.de/pub/NeuralNets/GA-and-NN/

 Author: Jochen Ruhland, FG Neuronale Netzwerke / Uni Kassel,

 Heinrich-Plett-Str. 40, D-34132 Kassel, Germany.

 <jochenr@neuro.informatik.uni-kassel.de>

 GENOCOP:

 This is a GA-based OPTIMIZATION package that has been developed by

 Zbigniew Michalewicz and is described in detail in his book Genetic

 Algorithms + Data Structures = Evolution Programs [MICHALE94].

 GENOCOP (Genetic Algorithm for Numerical Optimization for COnstrained

 Problems) optimizes a function with any number of linear constraints

 (equalities and inequalities).

 The second version of the system is available by FTP from

 ftp.uncc.edu/coe/evol/genocop2.tar.Z

 Zbigniew Michalewicz, Dept. of Computer Science, University of North

 Carolina, Chappel-Hill, NC, USA. Net: <zbyszek@uncc.edu>

 GIGA:

 GIGA is designed to propogate information through a POPULATION, using

 CROSSOVER as its operator. A discussion of how it propogates BUILDING

 BLOCKs, similar to those found in Royal Road functions by John

 Holland, is given in the DECEPTION section of: "Genetic Invariance: A

 New Paradigm for Genetic Algorithm Design." University of Alberta

 Technical Report TR92-02, June 1992. See also: "GIGA Program

 Description and Operation" University of Alberta Computing Science

 Technical Report TR92-06, June 1992

 These can be obtained, along with the program, by FTP from

 ftp.cs.ualberta.ca/pub/TechReports/ in the subdirectories TR92-02/

 and TR92-06/ .

 Also, the paper "Mutation-Crossover Isomorphisms and the Construction

 of Discriminating Functions" gives a more in-depth look at the

 behavior of GIGA. Its is available from

 ftp.cs.ualberta.ca/pub/joe/Preprints/xoveriso.ps.Z

 Joe Culberson, Department of Computer Science, University of Alberta,

 CA. Net: <joe@cs.ualberta.ca>

 GPEIST:

 The GENETIC PROGRAMMING ENVIRONMENT in Smalltalk (GPEIST) provides a

 framework for the investigation of Genetic Programming within a

 ParcPlace VisualWorks 2.0 development system. GPEIST provides

 program, POPULATION, chart and report browsers and can be run on

 HP/Sun/PC (OS/2 and Windows) machines. It is possible to distribute

 the experiment across several workstations - with subpopulation

 exchange at intervals - in this release 4.0a. Experiments,

 populations and INDIVIDUAL genetic programs can be saved to disk for

 subsequent analysis and experimental statistical measures exchanged

 with spreadsheets. Postscript printing of charts, programs and

 animations is supported. An implementation of the Ant Trail problem

 is provided as an example of the use of the GPEIST environment.

 GPEIST is available from ENCORE (see Q15.3) in file:

 EC/GP/src/GPEIST4.tar.gz

 Contact: Tony White, Bell-Northern Research Ltd., Computer Research

 Lab - Gateway, 320 March Road, Suite 400, Kanata, Ontario, Canada,

 K2K 2E3. tel: (613) 765-4279 <arpw@bnr.ca>

 Imogene:

 Imogene is a Windows 3.1 shareware program which generates pretty

 images using GENETIC PROGRAMMING. The program displays GENERATIONs

 of 9 images, each generated using a formula applied to each pixel.

 (The formulae are initially randomly computed). You can then select

 those images you prefer. In the next generation, the nine images are

 generated by combining and mutating the formulae for the most-

 preferred images in the previous generation. The result is a

 SIMULATION of natural SELECTION in which images evolve toward your

 aesthetic preferences.

 Imogene supports different color maps, palette animation, saving

 images to .BMP files, changing the wallpaper to nice images, printing

 images, and several other features. Imogene works only in 256 color

 mode and requires a floating point coprocessor and a 386 or better

 CPU.

 Imogene is based on work originally done by Karl Sims at

 (ex-)Thinking Machines for the CM-2 massively parallel computer - but

 you can use it on your PC. You can get Imogene from:

 http://www.aracnet.com/~wwir/software.html

 Contact: Harley Davis, ILOG S.A., 2 Avenue Gallini, BP 85, 94253

 Gentilly Cedex, France. tel: +33 1 46 63 66 66 <davis@ilog.fr>

 JAG:

 This Java program implements a simple GENETIC ALGORITHM where the

 FITNESS function takes non-negative values only. It employs ELITISM.

 The Java code was derived from the C code in the Appendix of Genetic

 Algorithms + Data Structures = Evolution Programs, [MICHALE94].

 Other ideas and code were drawn from GAC by Bill Spears.

 Four sample problems are contained in the code: three with bit GENEs

 and one with double genes. To use this program, modify the class

 MyChromosome to include your problem, which you have coded in some

 class, say YourChromosome. All changes to the sGA.java file to run

 your problem are confined to your class YourChromosome. This is what

 object-oriented programming is all about! The sGA.java source code

 file has a big comment at the end containing some sample runs.

 Available by FTP from ftp.mcs.drexel.edu/pub/shartley/simpleGA.tar.gz

 . Further information from Stephen J. Hartley

 <shartley@mcs.drexel.edu>, http://www.mcs.drexel.edu/~shartley .

 Drexel University, Math and Computer Science Department Philadelphia,

 PA 19104 USA. +1-215-895-2678

 LibGA:

 LibGA is a library of routines written in C for developing GENETIC

 ALGORITHMs. It is fairly simple to use, with many knobs to turn.

 Most GA parameters can be set or changed via a configuration file,

 with no need to recompile. (E.g., operators, pool size and even the

 data type used in the CHROMOSOME can be changed in the configuration

 file.) Function pointers are used for the GENETIC OPERATORs, so they

 can easily be manipulated on the fly. Several genetic operators are

 supplied and it is easy to add more. LibGA runs on many

 systems/architectures. These include Unix, DOS, NeXT, and Amiga.

 LibGA Version 1.00 is available by FTP from

 ftp.aic.nrl.navy.mil/pub/galist/src/ga/libga100.tar.Z or by email

 request to its author, Art Corcoran <corcoran@penguin.mcs.utulsa.edu>

 (Unverified 8/94).

 LICE:

 LICE is a parameter OPTIMIZATION program based on EVOLUTION

 STRATEGIEs (ES). In contrast to classic ES, LICE has a local

 SELECTION scheme to prevent premature stagnation. Details and results

 were presented at the EP'94 conference in San Diego. LICE is written

 in ANSI-C (more or less), and has been tested on Sparc-stations and

 Linux-PCs. If you want plots and graphics, you need X11 and gnuplot.

 If you want a nice user interface to create parameter files, you also

 need Tk/Tcl.

 LICE-1.0 is available as source code by FTP from

 lumpi.informatik.uni-dortmund.de/pub/ES/src/LICE-1.0.tar.gz

 Author: Joachim Sprave <joe@ls11.informatik.uni-dortmund.de>

 Matlab-GA:

 The MathWorks FTP site has some Matlab GA code in the directory

 ftp.mathworks.com/pub/contrib/v4/optim/genetic It's a bunch of .m

 files that implement a basic GA. Contact: Andrew Potvin,

 <potvin@mathworks.com> for information.

 mGA:

 mGA is an implementation of a messy GA as described in TCGA report

 No. 90004. Messy GAs overcome the linkage problem of simple GENETIC

 ALGORITHMs by combining variable-length strings, GENE expression,

 messy operators, and a nonhomogeneous phasing of evolutionary

 processing. Results on a number of difficult deceptive test

 functions have been encouraging with the messy GA always finding

 global optima in a polynomial number of function evaluations.

 See TCGA reports 89003, 90005, 90006, and 91004, and IlliGAL report

 91008 for more information on messy GAs (See Q14). The C language

 version is available by FTP from IlliGAL in the directory

 gal4.ge.uiuc.edu/pub/src/messyGA/C/

 PARAGenesis:

 PARAGenesis is the result of a project implementing Genesis on the

 CM-200 in C*. It is an attempt to improve PERFORMANCE as much as

 possible without changing the behavior of the GENETIC ALGORITHM.

 Unlike the punctuated equilibria and local SELECTION models,

 PARAGenesis doesn't modify the genetic algorithm to be more

 parallelizable as these modifications can drastically alter the

 behavior of the algorithm. Instead each member is placed on a

 separate processor allowing initialization, evaluation and MUTATION

 to be completely parallel. The costs of global control and

 communication in selection and CROSSOVER are present but minimized as

 much as possible. In general PARAGenesis on an 8k CM-200 seems to run

 10-100 times faster than Genesis on a Sparc 2 and finds equivalent

 solutions.

 PARAGenesis includes all the features of serial Genesis plus some

 additions. The additions include the ability to collect timing

 STATISTICS, probabilistic selection (as opposed to Baker's stochastic

 universal sampling), uniform crossover and local or neighborhood

 selection. Anyone familiar with the serial implementation of Genesis

 and C* should have little problem using PARAGenesis.

 PARAGenesis is available by FTP from

 ftp.aic.nrl.navy.mil/pub/galist/src/ga/paragenesis.tar.Z

 DISCLAIMER: PARAGenesis is fairly untested at this point and may

 contain some bugs.

 Michael van Lent, Advanced Technology Lab, University of Michigan,

 1101 Beal Av., Ann Arbor, MI 48109, USA. Net:

 <vanlent@eecs.umich.edu>.

 PGA:

 PGA is a simple testbed for basic explorations in GENETIC ALGORITHMs.

 Command line arguments control a range of parameters, there are a

 number of built-in problems for the GA to solve. The current set

 includes:

 o maximize the number of bits set in a CHROMOSOME

 o De Jong's functions DJ1, DJ2, DJ3, DJ5

 o binary F6, used by Schaffer et al

 o a crude 1-d knapsack problem; you specify a target and a set of

numbers in an external file, GA tries to find a subset that sums

as closely as possible to the target

 o the `royal road' function(s); a chromosome is regarded as a set of

consecutive blocks of size K, and scores K for each block entirely

filled with 1s, etc; a range of parameters.

 o max contiguous bits, you choose the ALLELE range.

 o timetabling, with various smart MUTATION options; capable of

solving a good many real-world timetabling problems (has done so)

 Lots of GA options: rank, roulette, tournament, marriage-tournament,

 spatially-structured SELECTION; one-point, two-point, uniform or no

 CROSSOVER; fixed or adaptive mutation; one child or two; etc.

 Default output is curses-based, with optional output to file; can be

 run non-interactively too for batched series of experiments.

 It's easy to add your own problems. Chromosomes are represented as

 character arrays, so you are not (quite) stuck with bit-string

 problem encodings.

 PGA has been used for teaching for a couple of years now, and has

 been used as a starting point by a fair number of people for their

 own projects. So it's reasonably reliable. However, if you find bugs,

 or have useful contributions to make, Tell Me! It is available by FTP

 from ftp.dai.ed.ac.uk/pub/pga/pga-3.1.tar.gz (see the file pga.README

 in the same directory for more information)

 Peter Ross, Department of AI, University of Edinburgh, 80 South

 Bridge, Edinburgh EH1 1HN, UK. Net: <peter@aisb.ed.ac.uk>

 PGAPack:

 PGAPack is a general-purpose, data-structure-neutral parallel GENETIC

 ALGORITHM library. It is intended to provide most capabilities

 desired in a genetic algorithm library, in an integrated, seamless,

 and portable manner.

 Features include:

 o Callable from Fortran or C.

 o Runs on uniprocessors, parallel computers, and workstation

networks.

 o Binary-, integer-, and real- and character-valued native data

types

 o Full extensibility to support custom operators and new data types.

 o Easy-to-use interface for novice and application users.

 o Multiple levels of access for expert users.

 o Extensive debugging facilities.

 o Large set of example problems.

 o Detailed users guide

 o Parameterized POPULATION replacement.

 o Multiple choices for SELECTION, CROSSOVER, and MUTATION operators

 o Easy integration of hill-climbing heuristics.

 Availability: PGAPack is freely available and may be obtained by FTP

 from info.mcs.anl.gov/pub/pgapack/pgapack.tar.Z or from

 http://www.mcs.anl.gov/pgapack.html

 Further Information from David Levine, Mathematics and Computer

 Science Division, Argonne National Laboratory, Argonne, Illinois

 60439, (708)-252-6735 <levine@mcs.anl.gov>

 http://www.mcs.anl.gov/home/levine

 REGAL:

 REGAL (RElational Genetic Algorithm Learner) is a distributed GA-

 based system, designed for learning multi-modal First Order Logic

 concept descriptions from examples. REGAL is based on a SELECTION

 operator, called Universal Suffrage operator, provably allowing the

 POPULATION to asymptotically converge, on average, to an equilibrium

 state, in which several SPECIES coexist. REGAL makes use of PVM 3.3

 and Tcl/Tk. This version of REGAL is provided with a graphical user

 interface developed in Tcl/Tk language.

 REGAL has been jointly developed by: Attilio Giordana

 <attilio@di.unito.it> http://www.di.unito.it/~attilio/ and Filippo

 Neri <neri@di.unito.it> http://www.di.unito.it/~neri/ at the

 University of Torino, Dipartimento di Informatica, Italy.

 See also:

 Neri F. and Giordana A. (1995). "A Distributed Genetic Algorithm

 for Concept Learning", Proc. Int. Conf. on Genetic Algorithms

 (Pittsburgh, PA), Morgan Kaufmann, pp. 436-443.

 Neri F. and Saitta L. (1995). "A Formal Analysis of

 Selection Schemes". Proc. Int. Conf. on Genetic Algorithms

 (Pittsburgh,PA), Morgan Kaufmann, pp. 32-39 .

 Giordana A. and Neri F. (1996). "Search-Intensive Concept

 Induction". Evolutionary Computation

 Journal, MIT Press, vol. 3, n. 4, pp. 375 - 416.

 Neri F. and Saitta L. (1997). "An Analysis of the

 Universal Suffrage Selection Operator". Evolutionary Computation

 Journal, MIT Press, vol. 4, n. 1, pp. 89-109.

 SGA-C, SGA-Cube:

 SGA-C is a C-language translation and extension of the original

 Pascal SGA code presented in Goldberg's book [GOLD89]. It has some

 additional features, but its operation is essentially the same as

 that of the Pascal version. SGA-C is described in TCGA report No.

 91002.

 SGA-Cube is a C-language translation of Goldberg's SGA code with

 modifications to allow execution on the nCUBE 2 Hypercube Parallel

 Computer. When run on the nCUBE 2, SGA-Cube can take advantage of

 the hypercube architecture, and is scalable to any hypercube

 dimension. The hypercube implementation is modular, so that the

 algorithm for exploiting parallel processors can be easily modified.

 In addition to its parallel capabilities, SGA-Cube can be compiled on

 various serial computers via compile-time options. In fact, when

 compiled on a serial computer, SGA-Cube is essentially identical to

 SGA-C. SGA-Cube is described in TCGA report No. 91005.

 Each of these programs is distributed in the form of a Unix shar

 file, available via e-mail or on various formatted media by request

 from: Robert Elliott Smith, Department of Engineering of Mechanics,

 Room 210 Hardaway Hall,, The University of Alabama P.O. Box 870278,

 Tuscaloosa, Alabama 35487, USA. Net: <rob@comec4.mh.ua.edu>

 SGA-C and SGA-Cube are also available in compressed tar form by FTP

 from ftp.aic.nrl.navy.mil/pub/galist/src/ga/sga-c.tar.Z and sga-

 cube.tar.Z .

 Splicer:

 Splicer is a GENETIC ALGORITHM tool created by the Software

 Technology Branch (STB) of the Information Systems Directorate at

 NASA/Johnson Space Center with support from the MITRE Corporation.

 Splicer has well-defined interfaces between a GA kernel,

 representation libraries, FITNESS modules, and user interface

 libraries.

 The representation libraries contain functions for defining,

 creating, and decoding genetic strings, as well as multiple CROSSOVER

 and MUTATION operators. Libraries supporting binary strings and

 permutations are provided, others can be created by the user.

 Fitness modules are typically written by the user, although some

 sample applications are provided. The modules may contain a fitness

 function, initial values for various control parameters, and a

 function which graphically displays the best solutions.

 Splicer provides event-driven graphic user interface libraries for

 the Macintosh and the X11 window system (using the HP widget set); a

 menu-driven ASCII interface is also available though not fully

 supported. The extensive documentation includes a reference manual

 and a user's manual; an architecture manual and the advanced

 programmer's manual are currently being written.

 An electronic bulletin board (300/1200/2400 baud, 8N1) with

 information regarding Splicer can be reached at (713) 280-3896 or

 (713) 280-3892. Splicer is available free to NASA and its

 contractors for use on government projects by calling the STB Help

 Desk weekdays 9am-4pm CST at (713) 280-2233. Government contractors

 should have their contract monitor call the STB Help Desk; others may

 purchase Splicer for $221 (incl. documentation) from: COSMIC, 382 E.

 Broad St., Athens, GA 30602, USA. (Unverified 8/94). Last known

 address <bayer@galileo.jsc.nasa.gov> (Steve Bayer). This now bounces

 back with "user unknown".

 TOLKIEN:

 TOLKIEN (TOoLKIt for gENetics-based applications) is a C++ class

 library, intended for those involved in GAs and CLASSIFIER SYSTEM

 research with a working knowledge of C++. It is designed to reduce

 effort in developing genetics-based applications by providing a

 collection of reusable objects. For portability, no compiler

 specific or class library specific features are used. The current

 version has been compiled successfully using Borland C++ Version 3.1

 and GNU C++.

 TOLKIEN contains a lot of useful extensions to the generic GENETIC

 ALGORITHM and classifier system architecture. Examples include: (i)

 CHROMOSOMEs of user-definable types; binary, character, integer and

 floating point; (ii) Gray code encoding and decoding; (iii) multi-

 point and uniform CROSSOVER; (iv) diploidy and dominance; (v) various

 SELECTION schemes such as tournament selection and linear ranking;

 (vi) linear FITNESS scaling and sigma truncation; (vii) the simplest

 one-taxon-one-action classifiers and the general two-taxa-one-action

 classifiers.

 TOLKIEN is available from ENCORE (See Q15.3) in file:

 GA/src/TOLKIEN.tar.gz The documentation and two primers on how to

 build GA and CFS applications alone are available as:

 GA/docs/tolkien-doc.tar.gz

 Author: Anthony Yiu-Cheung Tang <tang028@cs.cuhk.hk>, Department of

 Computer Science (Rm 913), The Chinese University of Hong Kong. Tel:

 609-8403, 609-8404.

 Trans-Dimensional Learning:

 This is a Windows 3.1 artificial neural netwrk and GA program

 (shareware). TDL allows users to perform pattern recognition by

 utilizing software that allows for fast, automatic construction of

 Neural Networks, mostly alleviating the need for parameter tuning.

 Evolutionary processes combined with semi-weighted networks (hybrid

 cross between standard weighted neurons and weightless n-level

 threshold units) generally yield very compact networks (i.e., reduced

 connections and hidden units). By supporting multi-shot learning over

 standard one-shot learning, multiple data sets (characterized by

 varying input and output dimensions) can be learned incrementally,

 resulting in a single coherent network. This can also lead to

 significant improvements in predictive accuracy (Trans-dimensional

 generalization). Graphical support and several data files are also

 provided.

 Available on the WWW from: http://pages.prodigy.com/upso

 For further details contact: <upso@prodigy.com>

 WOLF:

 This is a simulator for the G/SPLINES (genetic spline models)

 algorithm which builds spline-based functional models of experimental

 data, using CROSSOVER and MUTATION to evolve a POPULATION towards a

 better fit. It is derived from Friedman's MARS models. The original

 work was presented at ICGA-4, and further results including

 additional basis function types such as B-splines have been presented

 at the NIPS-91 meeting.

 Available free by FTP by contacting the author; runs on SUN (and

 possibly any SYSV) UNIX box. Can be redistributed for noncommercial

 use. Simulator includes executable and C source code; a technical

 report (RIACS tech report 91.10) is also available.

 David Rogers, MS Ellis, NASA Ames Research Center, Moffett Field, CA

 94035, USA. Net: <drogers@msi.com>

 CLASSIFIER SYSTEMS

 CFS-C:

 CFS-C 1.0 is a domain independent collection of CLASSIFIER SYSTEM

 routines written by Rick L. Riolo as part of his PhD dissertation. A

 completely rewritten CFS-C is planned for 1994/95; this may include

 the features of CFS-C 2.0 mentioned in [SAB90] (e.g. "latent

 learning") or they may be included in a separate package released in

 1995. An ANSIfied version of CFS-C 1.0 (CFS-C 1.98j) is available by

 FTP.

 CFS-C is available from ENCORE (See Q15.3) in file:

 CFS/src/cfsc-1.98j.tar.gz and includes the original 1.02 CFS-C in its

 "cfsc/orig" folder after unpacking. On the "SyS" FTP server its:

 lumpi.informatik.uni-dortmund.de/pub/LCS/src/cfsc-1.98j.tar.gz with

 documentation in /pub/LCS/docs/cfsc.ps.gz

 Another version of CFS-C (version XV 0.1) by Jens Engel

 <engel@asterix.irb.uni-hannover.de> is also available. This includes

 bug fixes of earlier versions, allowing it to run on a wider range of

 machines (e.g. Linux and nCUBE). It also has an XView front end that

 makes it easier to control, and some extensions to the algorithms.

 It is available from Encore in file: CFS/src/cfscxv-0.1.tar.gz with

 documentation in CFS/docs/cfscxv-0.1.readme.gz

 References

 Rick L. Riolo (1988) "CFS-C: A package of domain independent

 subroutines for implementing classifier systems in arbitrary, user-

 defined environments", Logic of computers group, Division of computer

 science and engineering, University of Michigan.

 Rick L. Riolo (1988) "LETSEQ: An implementation of the CFS-C

 classifier-system in a task-domain that involves learning to predict

 letter sequences", Logic of computers group, Division of computer

 science and engineering, University of Michigan.

 Rick L. Riolo (1988) "CFS-C/FSW1: An implementation of the CFS-C

 classifier system in a task domain that involves learning to traverse

 a finite state world", Logic of computers group, Division of computer

 science and engineering, University of Michigan.

 SCS-C:

 SCS-C is a (`mostly ANSI') C language translation and extension of

 Goldberg's Simple CLASSIFIER SYSTEM, as presented in Appendix D in

 his seminal book [GOLD89].

 SCS-C has been developed in parallel on a Sun 10/40 and an ATARI ST,

 and thus should be quite portable; it's distributed free of charge

 under the terms of the GNU General Public License. Included are some

 additional goodies, e.g. the VAX/VMS version of SCS, rewritten in C

 by Erik Mayer <emayer@uoft02.utoledo.edu>.

 SCS-C v1.0j is available from ENCORE (See Q15.3), by FTP in file

 EC/CFS/src/scsc-1.0j.tar.gz

 For more information contact: Joerg Heitkoetter, UUnet Deutschland

 GmbH, Techo-Park, Emil-Figge-Str. 80, D-44227 Dortmund, Germany.

 Net: <joke@de.uu.net>.

Subject: Q20.2: Commercial software packages?

 ActiveGA:

 ActiveGA is an activeX (OLE) control that uses a GENETIC ALGORITHM to

 find a solution for a given problem. For example, you can insert an

 ActiveGA control into Microsoft Excel 97 and have it optimize your

 worksheet.

 Features include:

 o OPTIMIZATION Mode: Minimize, Maximize or Closest To

o SELECTION Mode: Tournament, Roulette Wheel

o User defined POPULATION size, MUTATION rate and other parameters

o Event driven, cancelable iteration

o Invisible at run time

o Excel 97, Visual Basic, Visual C++ samples

 Various samples are available for free download. For these and

 further information, see

 http://www.brightsoft.com/products/activega.htm or contact

 Brightwater Software <support@brightsoft.com>. For a limited time

 the ActiveGA costs $99 per developer. ActiveGA has no run time

 royalties.

 EnGENEer:

 Logica Cambridge Ltd. developed EnGENEer as an in-house GENETIC

 ALGORITHM environment to assist the development of GA applications on

 a wide range of domains. The software was written in C and runs under

 Unix as part of a consultancy and systems package. It supports both

 interactive (X-Windows) and batch (command-line) modes of operation.

 EnGENEer provides a number of flexible mechanisms which allow the

 developer to rapidly bring the power of GAs to bear on new problem

 domains. Starting with the Genetic Description Language, the

 developer can describe, at high level, the structure of the ``genetic

 material'' used. The language supports discrete GENEs with user

 defined cardinality and includes features such as multiple

 CHROMOSOMEs models, multiple SPECIES models and non-evolvable parsing

 symbols which can be used for decoding complex genetic material.

 The user also has available a descriptive high level language, the

 Evolutionary Model Language. It allows the description of the GA type

 used in terms of configurable options including: POPULATION size,

 population structure and source, SELECTION method, CROSSOVER and

 MUTATION type and probability, INVERSION, dispersal method, and

 number of OFFSPRING per GENERATION.

 Both the Genetic Description Language and the Evolutionary Model

 Language are fully supported within the interactive interface

 (including online help system) and can be defined either "on the fly"

 or loaded from audit files which are automatically created during a

 GA run.

 Monitoring of GA progress is provided via both graphical tools and

 automatic storage of results (at user defined intervals). This allows

 the user to restart EnGENEer from any point in a run, by loading both

 the population at that time and the evolutionary model that was being

 used.

 Connecting EnGENEer to different problem domains is achieved by

 specifying the name of the program used to evaluate the problem

 specific FITNESS function and constructing a simple parsing routine

 to interpret the genetic material. A library of standard

 interpretation routines are also provided for commonly used

 representation schemes such as gray-coding, permutations, etc. The

 fitness evaluation can then be run as either a slave process to the

 GA or via a standard handshaking routines. Better still, it can be

 run on either the machine hosting the EnGENEer or on any sequential

 or parallel hardware capable of connecting to a Unix machine.

 For more information, contact: George Robbins, Systems Intelligence

 Division, Logica Cambridge Ltd., Betjeman House, 104 Hills Road,

 Cambridge CB2 1LQ, UK. Tel: +44 1716 379111, Fax: +44 1223 322315

 (Unverified 8/94).

 EvoFrame:

 EvoFrame is to EVOLUTION STRATEGIEs what MicroGA is to GENETIC

 ALGORITHMs, a toolkit for application development incorporating ESs

 as the OPTIMIZATION engine.

 EvoFrame is an object oriented implemented programming tool for

 evolution strategies (Rechenberg/Schwefel, Germany) for easy

 implementation and solution of numerical and combinatorical problems.

 EvoFrame gives you freedom of implementing every byte of the

 optimization principle and its user interface. You can focus on the

 optimization problem and forget about all the rest.

 EvoFrame is available as Version 2.0 in Borland-Pascal 7.0 and Turbo-

 Vision for PC's and as Version 1.0 in C++ for Apple Macintosh using

 MPW and MacApp. Both implementations allow full typed

 implementation, i.e. no more translation from problem specific

 format to an optimization specific one. A prototyping tool (cf

 REALizer) exists for both platforms too.

 EvoFrame allows pseudoparallel optimization of many problems at once

 and you can switch optimization parameters and internal methods (i.e.

 quality function etc.) during runtime and during optimization cycle.

 Both tools can be modified or extended by overloading existing

 methods for experimental use. They are developed continously in

 correlation to new research results.

 The PC version is prepared for experimental use due to a

 comprehensive protocolling mechanism of optimzation cycles and user

 data. It also allows compilation of executable files with different

 complexity by setting conditional compilation flags. It can be used

 with 3 levels of stacked POPULATIONs.

 The Mac version is the more complex (recursive) implementation. It

 allows stacking of any number of populations for modelling of complex

 systems. Theory stops at multipopulation level at the time. EvoFrame

 for Mac is ready for the future, allowing any number of population

 levels.

 Ask for porting the Mac version (C++) to any other platform, i.e. X

 Windows.

 REALizer is a tool for rapid prototyping of EvoFrame applications.

 It's an override of the corresponding framework which is prepared to

 optimize using a vector of real numbers. All methods for standard

 EVOLUTION and file handling, etc. are ready implemented. The

 remaining work for the user is to define a constant for the problem

 size, fill in the quality function and start the optimization

 process.

 For further information, current prices and orders, contact: Wolfram

 Stebel, Optimum Software, Braunfelser Str. 26, 35578 Wetzlar,

 Germany. Net: <optimum@applelink.apple.com>

 Evolver:

 Evolver is a GENETIC ALGORITHM package for Windows. Beginners can use

 the Excel add-in to model and solve problems from within Excel.

 Advanced users can use the included Evolver API to build custom

 applications that access any of the six different genetic algorithms.

 Evolver can be customized and users can monitor progress in real-time

 graphs, or change parameters through the included EvolverWatcher

 program. The package costs $349 (or UKP350), comes on two 3.5"

 disks, and includes support for Visual Basic. For further information

 or to order, contact: Palisade Corp, (607) 277-8000

 http://www.palisade.com or Palisade Europe <sales@palisade-

 europe.com>, Tel +44 1752 204310 http://www.palisade-europe.com

 FlexTool:

 FlexTool(GA) is a modular software tool which provides an ENVIRONMENT

 for applying GA to diverse domains with minimum user interaction and

 design iteration.

 Version M2.2 is the MATLAB version which provides a total GA based

 design and development environment in MATLAB. MATLAB provides us with

 an interactive computation intensive environment. The high level,

 user friendly programming language combined with built-in functions

 to handle matrix algebra, Fourier series, and complex valued

 functions provides the power for large scale number crunching.

 The GA objects are provided as .m files. FlexTool(GA) Version M2.2 is

 designed with emphasis on modularity, flexibility, user friendliness,

 environment transparency, upgradability, and reliability. The design

 is engineered to evolve complex, robust models by drawing on the

 power of MATLAB.

 FlexTool(GA) Version M2.2 Features:

 BUILDING BLOCK : Upgrade to EFM or ENM or CI within one year

 Niching module : to identify multiple solutions

 Clustering module : Use separately or with Niching module

 Optimization : Single and Multiple Objectives

 Flex-GA : Very fast proprietary learning algorithm

 GA : Modular, User Friendly, and System Transparent

 GUI : Easy to use, user friendly

 Help : Online

 Tutorial : Hands-on tutorial, application guidelines

 Parameter Settings : Default parameter settings for the novice

 General : Statistics, figures, and data collection

 Compatibility : FlexTool product suite

 GA options : generational, steady state, micro, Flex-GA

 Coding schemes : include binary, logarithmic, real

 Selection : tournament, roulette wheel, ranking

 Crossover : include 1, 2, multiple point crossover

 Compatible to : FlexTool(GA) M1.1 Genetic Algorithms Toolbox

 The FlexTool product suite includes various soft computing BUILDING

 BLOCKs:

 CI: Computational Intelligence http://www.flextool.com/ftci.html

 EFM: Evolutionary Fuzzy Modeling http://www.flextool.com/ftefm.html

 ENM: Evolutionary Neuro Modeling http://www.flextool.com/ftenm.html

 FS : Fuzzy Systems http://www.flextool.com/ftfs.html

 EA : EVOLUTIONARY ALGORITHMs http://www.flextool.com/ftga.html

 NN : Neural Networks http://www.flextool.com/ftnn.html

 For information contact <info@flextool.com> http://www.flextool.com

 GAME:

 GAME (GA Manipulation Environment) aims to demonstrate GA

 applications and build a suitable programming ENVIRONMENT.

 GAME is being developed as part of the PAPAGENA project of the

 European Community's Esprit III initiative.

 GAME is available as an addendum to a book on PGAs (cf PAPAGENA,

 Q20.3). And from the project's FTP server

 bells.cs.ucl.ac.uk/papagena/ e.g. "papagena/game/docs" contains all

 the papers that have been produced over the course of the GAME

 project. The sources can also be obtained by FTP see

 papagena/game/version2.01/

 GAME is now in version 2.01. This version is still able to run only

 sequential GAs, but version 3.0 will handle parallel GAs as well.

 Unfortunately, The project yet only produced a Borland C++ 3.x

 version, so far. It is intended to distribute a version for UNIX/GNU

 C++ as well, when some compatibility issues concerning C++

 "standards" have been resolved. Afterward a UNIX version will be

 released, but this will be only happen after the release of PC

 version 3.0.

 For more information contact: Jose Luiz Ribeiro Filho, Department of

 Computer Science, University College London, Gower Street, London

 WC1E 6BT, UK. Net: <zeluiz@cs.ucl.ac.uk> (Unverified 8/94).

 GeneHunter:

 GeneHunter from Ward Systems runs on a PC under Windows. It is

 callable from Microsoft Excel 5 spreadsheets, and accessible via

 function calls in a dynamic link library. The DLL is designed

 especially for Visual Basic, but runs with other languages which call

 DLLs under Windows 3.1 such as Visual C++. 16- and 32-bit versions

 are available. GeneHunter can also integrate with Ward's neural

 network software. Cost $369.

 For full details, see http://www.wardsystems.com/ or contact: Ward

 Systems Group Inc, Executive Park West, 5 Hillcrest Drive, Frederick,

 MD 21703, USA. 301-662-7950 <wardsystems@msn.com>

 Generator:

 GENERATOR is a GENETIC ALGORITHM package designed to interact with

 Microsoft Excel for Windows. Users are able to define and solve

 problems using Excel formulas, tables and functions. FITNESS is

 easily defined as an Excel formula or optionally a macro. Progress

 can be monitored using GENERATOR's real-time fitness graph and status

 window as well as user-defined Excel graphs. GENERATOR can be paused

 at any time to allow adjustment of any of the parameters and then

 resumed.

 GENERATOR Features:

 o Multiple GENE types: integer, real and permutation.

 o Combined roulette-wheel and elitist SELECTION method.

 o ELITISM is optional and adjustable.

 o None, two-point, and a proprietary permutation CROSSOVER.

 o Random, Random Hillclimb and Directional Hillclimb MUTATION

methods.

 o Special hillclimbing features to find solutions faster.

 o fitness goal: maximize, minimize or seek value.

 o Convergence: duplicates not allowed.

 o Real-Time alteration of parameters relating to crossover,

mutation, POPULATION, etc.

 o Real-Time progress graph of Best, Worst and Median fitness.

 o fitness defined using an Excel formula or macro.

 The parameters available to the user include mutation probability for

 population and genes, control of mutation limit per gene, control of

 hillclimbing, population size, elite group size, RECOMBINATION

 method, and mutation technique.

 Connecting generator to problems defined on the Excel spreadsheet is

 achieved by first specifying the spreadsheet locations of the gene

 group cells and their type, and lastly, the location of the formula

 used to evaluate the problem-specific fitness function.

 GENERATOR requires at least a 386 IBM compatible PC with 2 MB of RAM,

 Windows 3.0 (or later) and Microsoft Excel 4.0 (or later). A

 comprehensive manual includes an explanation of genetic algorithms

 and several tutorial example problems. The $379 package.includes

 GENERATOR on a 3.5" diskette, the manual, and free customer support.

 For further information or to order, contact: New Light Industries,

 Ltd.; 9713 W. Sunset Hwy; Spokane, WA USA 99204 Tel: (509) 456-8321;

 Fax (509) 456-8351; E-mail: <nli@comtch.iea.com> WWW page:

 http://www.iea.com/~nli

 MicroGA:

 MicroGA is a powerful and flexible new tool which allows programmers

 to integrate GAs into their software quickly and easily. It is an

 object-oriented C++ framework that comes with full source code and

 documentation as well as three sample applications. Also included is

 the Galapagos code generator which allows users to create complete

 applications interactively without writing any C++ code, and a sample

 MacApp interface.

 MicroGA is available for Macintosh II or higher with MPW and a C++

 compiler, and also in a Microsoft Windows version for PC compatibles.

 Compiled applications made with MicroGA can be sold without license

 fee. MicroGA is priced at $249.

 Galapagos is a tool for use with Emergent Behavior's MicroGA Toolkit.

 It allows a user to define a function and set of constraints for a

 problem that the user wants to solve using the GA. Galapagos then

 generates a complete C++ program using the information supplied. Then

 all the user has to do is to compile these files, using either

 Turbo/Borland C++ (PC, MS Windows), or MPW and C++ compiler

 (Macintosh), and link the resulting code to the MicroGA library. Then

 just run the program. Galapagos comes free with every copy of

 MicroGA.

 For further information and orders, contact: Steve Wilson, Emergent

 Behavior, 635 Wellsbury Way, Palo Alto, CA 94306, USA. Net:

 <emergent@aol.com>

 MicroGA is distributed in Germany by Optimum Software (cf EvoFrame &

 REALizer entries).

 Omega:

 The Omega Predictive Modeling System, marketed by KiQ Limited, is a

 powerful approach to developing predictive models. It exploits

 advanced GA techniques to create a tool which is "flexible, powerful,

 informative and straightforward to use". Omega is geared to the

 financial domain, with applications in Direct Marketing, Insurance,

 Investigations and Credit Management. The ENVIRONMENT offers

 facilities for automatic handling of data; business, statistical or

 custom measures of PERFORMANCE, simple and complex profit modeling,

 validation sample tests, advanced confidence tests, real time

 graphics, and optional control over the internal GA.

 For further information, contact: KiQ, Business Modeling Systems

 Ltd., Easton Hall, Great Easton, Essex CM6 2HD, UK. Tel: +44 1371

 870254 (Unverified 8/94).

 OOGA:

 OOGA (Object-Oriented GA) is a GENETIC ALGORITHM designed for

 industrial use. It includes examples accompanying the tutorial in

 the companion "Handbook of Genetic Algorithms". OOGA is designed such

 that each of the techniques employed by a GA is an object that may be

 modified, displayed or replaced in object-oriented fashion. OOGA is

 especially well-suited for individuals wishing to modify the basic GA

 techniques or tailor them to new domains.

 The buyer of OOGA also receives Genesis (see above). This release

 sports an improved user interface. OOGA and Genesis are available

 together on 3.5'' or 5.25'' disk for $60 ($52.50 inside North

 America) by order from: The Software Partnership (T.S.P.), P.O. Box

 991, Melrose, MA 02176, USA. Tel: +1 617 662 8991 (Unverified 8/94).

 PC-Beagle:

 PC-Beagle is a rule-finder program for PCs which examines a database

 of examples and uses machine-learning techniques to create a set of

 decision rules for classifying those examples, thus turning data into

 knowledge. The system contains six major components, one of which

 (HERB - the "Heuristic Evolutionary Rule Breeder") uses GA techniques

 to generate rules by natural SELECTION.

 PC-Beagle is available to educational users for 69 pounds sterling.

 Orders, payment or requests for information should be addressed to:

 Richard Forsyth, Pathway Research Ltd., 59 Cranbrook Rd., Bristol BS6

 7BS, UK. Tel: +44 117 942 8692 (Unverified 8/94).

 XpertRule GenAsys:

 XpertRule GenAsys is an expert system shell with embedded GENETIC

 ALGORITHM marketed by Attar Software. Targeted to solve scheduling

 and design applications, this system combines the power of genetic

 algorithms in evolving solutions with the power of rule-based

 programming in analyzing the effectiveness of solutions. Rule-based

 programming can also be used to generate the initial POPULATION for

 the genetic algorithm and for post-optimization planning. Some

 examples of design and scheduling problems which can be solved by

 this system include: OPTIMIZATION of design parameters in electronic

 and avionic industries, route optimization in the distribution

 sector, production scheduling in manufacturing, etc.

 For further information, contact: Attar Software, Newlands Road,

 Leigh, Lancashire, UK. Tel: +44 1942 608844.

 <100116.1547@CompuServe.com> http://www.attar.com (confirmed 3/96).

 XYpe:

 XYpe (The GA Engine) is a commercial GA application and development

 package for the Apple Macintosh. Its standard user interface allows

 you to design CHROMOSOMEs, set attributes of the genetic engine and

 graphically display its progress. The development package provides a

 set of Think C libraries and include files for the design of new GA

 applications. XYpe supports adaptive operator weights and mixtures of

 alpha, binary, gray, ordering and real number codings.

 The price of $725 (in Massachusetts add 5% sales tax) plus $15

 shipping and handling includes technical support and three

 documentation manuals. XYpe requires a Macintosh SE or newer with

 2MB RAM running OS V6.0.4 or greater, and Think C if using the

 development package.

 Currently the GA engine is working; the user interface will be

 completed on demand. Interested parties should contact: Ed Swartz,

 Virtual Image, Inc., 75 Sandy Pond Road #11, Ayer, MA 01432, USA.

 Tel: +1 (508) 772-4225 (Unverified 8/94).

Subject: Q20.3: Current research projects?

 PAPAGENA:

 The European ESPRIT III project PAPAGENA is pleased to announce the

 availability of the following book and software:

 Parallel Genetic Algorithms: Theory and Applications was recently

 published by IOS press. The book, edited by Joachim Stender, provides

 an overview of the theoretical, as well as practical, aspects

 involved in the study and implementation of parallel GENETIC

 ALGORITHMs (PGAs).

 The book comes with a floppy disk version of GAME (Genetic Algorithm

 Manipulation Environment). For more information see the section on

 GAME in Q20.2.

 PeGAsuS:

 PeGAsuS is a general programming environment for evolutionary

 algorithms. developed at the German National Research Center for

 Computer Science. Written in ANSI-C, it runs on MIMD parallel

 machines, such as transputers, and distributed systems, as well as

 serial machines.

 The Library contains GENETIC OPERATORs, a collection of FITNESS

 functions, and input/output and control procedures. It provides the

 user with a number of validated modules. Currently, PeGAsuS can be

 compiled with the GNU C, RS/6000 C, ACE-C, and Alliant's FX/2800 C

 compilers. It runs on SUNs and RS/6000 workstations, as well as on

 the Alliant FX/28. PeGAsuS is not available to the public.

 For more information contact: Dirk Schlierkamp-Voosen, Research Group

 for Adative Systems, German National Research Center for Computer

 Science, 53731 Sankt Augustin, Germany. Net: <dirk.schlierkamp-

 voosen@gmd.de>

 Copyright (c) 1993-1999 by J. Heitkoetter and D. Beasley, all rights

 reserved.

 This FAQ may be posted to any USENET newsgroup, on-line service, or

 BBS as long as it is posted in its entirety and includes this

 copyright statement. This FAQ may not be distributed for financial

 gain. This FAQ may not be included in commercial collections or

 compilations without express permission from the author.

End of ai-faq/genetic/part5

Path: senator-bedfellow.mit.edu!bloom-beacon.mit.edu!cam-news-feed5.bbnplanet.com!cam-news-hub1.bbnplanet.com!news.gtei.net!feed2.news.luth.se!luth.se!uio.no!newsfeed.nacamar.de!news-hh.maz.net!colt.net!newspeer.clara.net!news.clara.net!nntp.news.xara.net!xara.net!server5.netnews.ja.net!server3.netnews.ja.net!server4.netnews.ja.net!fafnir.cf.ac.uk!scmdb

From: David.Beasley@cs.cf.ac.uk (David Beasley)

Newsgroups: comp.ai.genetic,comp.answers,news.answers

Subject: FAQ: comp.ai.genetic part 6/6 (A Guide to Frequently Asked Questions)

Supersedes: <part6_914242413@cs.cf.ac.uk>

Followup-To: comp.ai.genetic

Date: 1 Apr 1999 17:44:43 GMT

Organization: Posted through the Joint Cardiff Computing Service, Wales, UK

Lines: 1569

Approved: news-answers-request@MIT.Edu

Expires: 4 Jul 1999 17:44:34 GMT

Message-ID: <part6_922988674@cs.cf.ac.uk>

References: <part5_922988674@cs.cf.ac.uk>

NNTP-Posting-Host: thrall.cs.cf.ac.uk

X-Trace: fafnir.cf.ac.uk 922988683 11045 131.251.42.22 (1 Apr 1999 17:44:43 GMT)

X-Complaints-To: abuse@cf.ac.uk

NNTP-Posting-Date: 1 Apr 1999 17:44:43 GMT

Summary: This is part 6 of a <trilogy> entitled "The Hitch-Hiker's Guide

 to Evolutionary Computation". A periodically published list of Frequently

 Asked Questions (and their answers) about Evolutionary Algorithms,

 Life and Everything. It should be read by anyone who whishes to post

 to the comp.ai.genetic newsgroup, preferably *before* posting.

Originator: scmdb@thrall.cs.cf.ac.uk

Xref: senator-bedfellow.mit.edu comp.ai.genetic:15812 comp.answers:35655 news.answers:154839

Archive-name: ai-faq/genetic/part6

Last-Modified: 4/1/99

Issue: 7.1

Important note: Do NOT send email to the cs.cf.ac.uk address above: it will

 be ignored. Corrections and other correspondence should be sent to

 david.beasley@iee.org

TABLE OF CONTENTS OF PART 6

 Q21: What are Gray codes, and why are they used?

 Q22: What test data is available?

 Q42: What is Life all about?

 Q42b: Is there a FAQ to this group?

 Q98: Are there any patents on EAs?

 Q99: A Glossary on EAs?

--

Subject: Q21: What are Gray codes, and why are they used?

 The correct spelling is "Gray"---not "gray", "Grey", or "grey"---

 since Gray codes are named after the Frank Gray who patented their

 use for shaft encoders in 1953 [1]. Gray codes actually have a

 longer history, and the inquisitive reader may want to look up the

 August, 1972, issue of Scientific American, which contains two

 articles of interest: one on the origin of binary codes [2], and

 another by Martin Gardner on some entertaining aspects of Gray

 codes [3]. Other references containing descriptions of Gray codes

 and more modern, non-GA, applications include the second edition of

 Numerical Recipes [4], Horowitz and Hill [5], Kozen [6], and

 Reingold [7].

 A Gray code represents each number in the sequence of integers

 {0...2^N-1} as a binary string of length N in an order such that

 adjacent integers have Gray code representations that differ in only

 one bit position. Marching through the integer sequence therefore

 requires flipping just one bit at a time. Some call this defining

 property of Gray codes the "adjacency property" [8].

 Example (N=3): The binary coding of {0...7} is {000, 001, 010, 011,

 100, 101, 110, 111}, while one Gray coding is {000, 001, 011, 010,

 110, 111, 101, 100}. In essence, a Gray code takes a binary sequence

 and shuffles it to form some new sequence with the adjacency

 property. There exist, therefore, multiple Gray codings for

 any given N. The example shown here belongs to a class of Gray

 codes that goes by the fancy name "binary-reflected Gray codes".

 These are the most commonly seen Gray codes, and one simple

 scheme for generationg such a Gray code sequence says, "start with

 all bits zero and successively flip the right-most bit that produces

 a new string."

 Hollstien [9] investigated the use of GAs for optimizing functions of

 two variables and claimed that a Gray code representation worked

 slightly better than the binary representation. He attributed this

 difference to the adjacency property of Gray codes. Notice in the

 above example that the step from three to four requires the flipping

 of all the bits in the binary representation. In general, adjacent

 integers in the binary representaion often lie many bit flips apart.

 This fact makes it less likely that a MUTATION operator can effect

 small changes for a binary-coded INDIVIDUAL.

 A Gray code representation seems to improve a mutation operator's

 chances of making incremental improvements, and a close examination

 suggests why. In a binary-coded string of length N, a single

 mutation in the most significant bit (MSB) alters the number by

 2^(N-1). In a Gray-coded string, fewer mutations lead to a change

 this large. The user of Gray codes does, however, pay a price for

 this feature: those "fewer mutations" lead to much larger changes.

 In the Gray code illustrated above, for example, a single mutation of

 the left-most bit changes a zero to a seven and vice-versa, while the

 largest change a single mutation can make to a corresponding binary-

 coded individual is always four. One might still view this aspect of

 Gray codes with some favor: most mutations will make only small

 changes, while the occasional mutation that effects a truly big

 change may initiate EXPLORATION of an entirely new region in the

 space of CHROMOSOMEs.

 The algorithm for converting between the binary-reflected Gray code

 described above and the standard binary code turns out to be

 surprisingly simple to state. First label the bits of a binary-coded

 string B[i], where larger i's represent more significant bits, and

 similarly label the corresponding Gray-coded string G[i]. We convert

 one to the other as follows: Copy the most significant bit. Then

 for each smaller i do either G[i] = XOR(B[i+1], B[i])---to convert

 binary to Gray---or B[i] = XOR(B[i+1], G[i])---to convert Gray to

 binary.

 One may easily implement the above algorithm in C. Imagine you do

 something like

 typedef unsigned short ALLELE;

 and then use type "allele" for each bit in your chromosome, then the

 following two functions will convert between binary and Gray code

 representations. You must pass them the address of the high-order

 bits for each of the two strings as well as the length of each

 string. (See the comment statements for examples.) NB: These

 functions assume a chromosome arranged as shown in the following

 illustration.

 index: C[9] C[0]

 Char C: | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |

 ^^^^^ ^^^^^

 high-order bit low-order bit

 C CODE

 /* Gray <==> binary conversion routines */

 /* written by Dan T. Abell, 7 October 1993 */

 /* please send any comments or suggestions */

 /* to dabell@quark.umd.edu */

 void gray_to_binary (Cg, Cb, n)

 /* convert chromosome of length n+1 */

 /* from Gray code Cg[0...n] */

 /* to binary code Cb[0...n] */

 allele *Cg,*Cb;

 int n;

 {

 int j;

 *Cb = *Cg; /* copy the high-order bit */

 for (j = 0; j < n; j++) {

 Cb--; Cg--; /* for the remaining bits */

 *Cb= *(Cb+1)^*Cg; /* do the appropriate XOR */

 }

 }

 void binary_to_gray(Cb, Cg, n)

 /* convert chromosome of length n+1 */

 /* from binary code Cb[0...n] */

 /* to Gray code Cg[0...n] */

 allele *Cb, *Cg;

 int n;

 {

 int j;

 *Cg = *Cb; /* copy the high-order bit */

 for (j = 0; j < n; j++) {

 Cg--; Cb--; /* for the remaining bits */

 *Cg= *(Cb+1)^*Cb; /* do the appropriate XOR */

 }

 }

 References

 [1] F. Gray, "Pulse Code Communication", U. S. Patent 2 632 058,

 March 17, 1953.

 [2] F. G. Heath, "Origins of the Binary Code", Scientific American

 v.227,n.2 (August, 1972) p.76.

 [3] Martin Gardner, "Mathematical Games", Scientific American

 v.227,n.2 (August, 1972) p.106.

 [4] William H. Press, et al., Numerical Recipes in C, Second Edition

 (Cambridge University Press, 1992).

 [5] Paul Horowitz and Winfield Hill, The Art of Electronics, Second

 Edition (Cambridge University Press, 1989).

 [6] Dexter Kozen, The Design and Analysis of Algorithms (Springer-

 Verlag, New York, NY, 1992).

 [7] Edward M. Reingold, et al., Combinatorial Algorithms (Prentice

 Hall, Englewood Cliffs, NJ, 1977).

 [8] David E. Goldberg, Genetic Algorithms in Search, Optimization,

 and Machine Learning (Addison-Wesley, Reading, MA, 1989).

 [9] R. B. Hollstien, Artificial Genetic Adaptation in Computer

 Control Systems (PhD thesis, University of Michigan, 1971).

 [10] Albert Nijenhuis and Herbert S. Wilf, Combinatorial Algorithms,

 (Academic Press, Inc., New York, San Francisco, London 1975).

Subject: Q22: What test data is available?

 TSP DATA

 There is a TSP library (TSPLIB) available which has many solved and

 semi-solved TSPs and different variants. The library is maintained by

 Gerhard Reinelt <reinelt@ares.iwr.Uni-Heidelberg.de>. It is available

 from various FTP sites, including:

 softlib.cs.rice.edu/pub/tsplib/tsblib.tar

 OPERATIONAL RESERACH DATA

 Information about Operational Research test problems in a wide

 variety of areas can be obtained by emailing <o.rlibrary@ic.ac.uk>

 with the body of the email message being just the word "info". The

 files in OR-Library are also available via anonymous FTP from

 mscmga.ms.ic.ac.uk/pub/ A WWW page is also available at URL:

 http://mscmga.ms.ic.ac.uk/ Instructions on how to use OR-Library can

 be found in the file "paper.txt", or in the article: J.E.Beasley,

 "OR-Library: distributing test problems by electronic mail", Journal

 of the Operational Research Society 41(11) (1990) pp1069-1072.

 The following is a list of some of the topics covered.

 File Problem area

 assigninfo.txt Assignment problem

 deainfo.txt Data envelopment analysis

 gapinfo.txt Generalised assignment problem

 mipinfo.txt Integer programming

 lpinfo.txt Linear programming

 scpinfo.txt Set covering

 sppinfo.txt Set partitioning

 tspinfo.txt Travelling salesman problem

 periodtspinfo.txt Period travelling salesman problem

 netflowinfo.txt Network flow problem

 Location:

 capmstinfo.txt capacitated minimal spanning tree

 capinfo.txt capacitated warehouse location

 pmedinfo.txt p-median

 uncapinfo.txt uncapacitated warehouse location

 mknapinfo.txt Multiple knapsack problem

 qapinfo.txt Quadratic assignment problem

 rcspinfo.txt Resource constrained shortest path

 phubinfo.txt p-hub location problem

 Scheduling:

 airlandinfo.txt Aircraft Landing Problem

 cspinfo.txt Crew scheduling

 flowshopinfo.txt flow shop

 jobshopinfo.txt job shop

 openshopinfo.txt open shop

 tableinfo.txt timetabling problem

 Steiner:

 esteininfo.txt Euclidean Steiner problem

 rsteininfo.txt Rectilinear Steiner problem

 steininfo.txt Steiner problem in graphs

 Two-dimensional cutting:

 assortinfo.txt assortment problem

 cgcutinfo.txt constrained guillotine

 ngcutinfo.txt constrained non-guillotine

 gcutinfo.txt unconstrained guillotine

 Vehicle routing:

 areainfo.txt fixed areas

 fixedinfo.txt fixed routes

 periodinfo.txt period routing

 vrpinfo.txt single period

 multivrpinfo.txt multiple depot vehicle routing problem

 OTHER DATA

 William Spears <spears@aic.nrl.navy.mil> maintains a WWW page titled:

 Test Functions for Evolutionary Algorithms which contians links to

 various sources of test functions.

 http://www.aic.nrl.navy.mil:80/~spears/functs.html

 ENCORE (see Q15.3) also contains some test data. See directories

 under /etc/data/

Subject: Q42: What is Life all about?

 42

 References

 Adams, D. (1979) "The Hitch Hiker's Guide to the Galaxy", London: Pan

 Books.

 Adams, D. (1980) "The Restaurant at the End of the Universe", London:

 Pan Books.

 Adams, D. (1982) "Life, the Universe and Everything", London: Pan

 Books.

 Adams, D. (1984) "So long, and thanks for all the Fish", London: Pan

 Books.

 Adams, D. (1992) "Mostly Harmless", London: Heinemann.

Subject: Q42b: Is there a FAQ to this group?

 Yes.

Subject: Q98: Are there any patents on EAs?

 Process patents have been issued both for the Bucket Brigade

 Algorithm in CLASSIFIER SYSTEMs: U.S. patent #4,697,242: J.H. Holland

 and A. Burks, "Adaptive computing system capable of learning and

 discovery", 1985, issued Sept 29 1987; and for GP: U.S. patent

 #4,935,877 (to John Koza).

 This FAQ does not attempt to provide legal advice. However, use of

 the Lisp code in the book [KOZA92] is freely licensed for academic

 use. Although those wishing to make commercial use of any process

 should obviously consult any patent holders in question, it is pretty

 clear that it's not in anyone's best interests to stifle GA/GP

 research and/or development. Commercial licenses much like those used

 for CAD software can presumably be obtained for the use of these

 processes where necessary.

 Jarmo Alander's massive bibliography of GAs (see Q10.8) includes a

 (probably) complete list of all currently know patents. There is

 also a periodic posting on comp.ai.neural-nets by Gregory Aharonian

 <srctran@world.std.com> about patents on Artificial Neural Networks

 (ANNs).

Subject: Q99: A Glossary on EAs?

 A very good glossary of genetics terminology can be found at

 http://helios.bto.ed.ac.uk/bto/glossary

 1

 1/5 SUCCESS RULE:

 Derived by I. Rechenberg, the suggestion that when Gaussian

 MUTATIONs are applied to real-valued vectors in searching for

 the minimum of a function, a rule-of-thumb to attain good rates

 of error convergence is to adapt the STANDARD DEVIATION of

 mutations to generate one superior solution out of every five

 attempts.

 A

 ADAPTIVE BEHAVIOUR:

 "...underlying mechanisms that allow animals, and potentially,

 ROBOTs to adapt and survive in uncertain environments" --- Meyer

 & Wilson (1991), [SAB90]

 AI: See ARTIFICIAL INTELLIGENCE.

 ALIFE:

 See ARTIFICIAL LIFE.

 ALLELE :

 (biol) Each GENE is able to occupy only a particular region of a

 CHROMOSOME, its locus. At any given locus there may exist, in

 the POPULATION, alternative forms of the gene. These alternative

 are called alleles of one another.

 (EC) The value of a gene. Hence, for a binary representation,

 each gene may have an ALLELE of 0 or 1.

 ARTIFICIAL INTELLIGENCE:

 "...the study of how to make computers do things at which, at

 the moment, people are better" --- Elaine Rich (1988)

 ARTIFICIAL LIFE:

 Term coined by Christopher G. Langton for his 1987 [ALIFEI]

 conference. In the preface of the proceedings he defines ALIFE

 as "...the study of simple computer generated hypothetical life

 forms, i.e. life-as-it-could-be."

 B

 BUILDING BLOCK:

 (EC) A small, tightly clustered group of GENEs which have co-

 evolved in such a way that their introduction into any

 CHROMOSOME will be likely to give increased FITNESS to that

 chromosome.

 The "building block hypothesis" [GOLD89] states that GAs find

 solutions by first finding as many BUILDING BLOCKs as possible,

 and then combining them together to give the highest fitness.

 C

 CENTRAL DOGMA:

 (biol) The dogma that nucleic acids act as templates for the

 synthesis of proteins, but never the reverse. More generally,

 the dogma that GENEs exert an influence over the form of a body,

 but the form of a body is never translated back into genetic

 code: acquired characteristics are not inherited. cf LAMARCKISM.

 (GA) The dogma that the behaviour of the algorithm must be

 analysed using the SCHEMA THEOREM.

 (life in general) The dogma that this all is useful in a way.

 "You guys have a dogma. A certain irrational set of believes.

 Well, here's my irrational set of beliefs. Something that

 works."

 --- Rodney A. Brooks, [LEVY92]

 CFS: See CLASSIFIER SYSTEM.

 CHROMOSOME:

 (biol) One of the chains of DNA found in cells. CHROMOSOMEs

 contain GENEs, each encoded as a subsection of the DNA chain.

 Chromosomes are usually present in all cells in an organism,

 even though only a minority of them will be active in any one

 cell.

 (EC) A datastructure which holds a `string' of task parameters,

 or genes. This may be stored, for example, as a binary bit-

 string, or an array of integers.

 CLASSIFIER SYSTEM:

 A system which takes a (set of) inputs, and produces a (set of)

 outputs which indicate some classification of the inputs. An

 example might take inputs from sensors in a chemical plant, and

 classify them in terms of: 'running ok', 'needs more water',

 'needs less water', 'emergency'. See Q1.4 for more information.

 COMBINATORIAL OPTIMIZATION:

 Some tasks involve combining a set of entities in a specific way

 (e.g. the task of building a house). A general combinatorial

 task involves deciding (a) the specifications of those entities

 (e.g. what size, shape, material to make the bricks from), and

 (b) the way in which those entities are brought together (e.g.

 the number of bricks, and their relative positions). If the

 resulting combination of entities can in some way be given a

 FITNESS score, then COMBINATORIAL OPTIMIZATION is the task of

 designing a set of entities, and deciding how they must be

 configured, so as to give maximum fitness. cf ORDER-BASED

 PROBLEM.

 COMMA STRATEGY:

 Notation originally proposed in EVOLUTION STRATEGIEs, when a

 POPULATION of "mu" PARENTs generates "lambda" OFFSPRING and the

 mu parents are discarded, leving only the lambda INDIVIDUALs to

 compete directly. Such a process is written as a (mu,lambda)

 search. The process of only competing offspring then is a

 "comma strategy." cf. PLUS STRATEGY.

 CONVERGED:

 A GENE is said to have CONVERGED when 95% of the CHROMOSOMEs in

 the POPULATION all contain the same ALLELE for that gene. In

 some circumstances, a population can be said to have converged

 when all genes have converged. (However, this is not true of

 populations containing multiple SPECIES, for example.)

 Most people use "convergence" fairly loosely, to mean "the GA

 has stopped finding new, better solutions". Of course, if you

 wait long enough, the GA will *eventually* find a better

 solution (unless you have already found the global optimum).

 What people really mean is "I'm not willing to wait for the GA

 to find a new, better solution, because I've already waited

 longer than I wanted to and it hasn't improved in ages."

 An interesting discussion on convergence by Michael Vose can be

 found in GA-Digest v8n22, available from

 ftp.aic.nrl.navy.mil/pub/galist/digests/v8n22

 CONVERGENCE VELOCITY:

 The rate of error reduction.

 COOPERATION:

 The behavior of two or more INDIVIDUALs acting to increase the

 gains of all participating individuals.

 CROSSOVER:

 (EC) A REPRODUCTION OPERATOR which forms a new CHROMOSOME by

 combining parts of each of two `parent' chromosomes. The

 simplest form is single-point CROSSOVER, in which an arbitrary

 point in the chromosome is picked. All the information from

 PARENT A is copied from the start up to the crossover point,

 then all the information from parent B is copied from the

 crossover point to the end of the chromosome. The new chromosome

 thus gets the head of one parent's chromosome combined with the

 tail of the other. Variations exist which use more than one

 crossover point, or combine information from parents in other

 ways.

 (biol) A complicated process which typically takes place as

 follows: chromosomes, while engaged in the production of

 GAMETEs, exchange portions of genetic material. The result is

 that an almost infinite variety of gametes may be produced.

 Subsequently, during sexual REPRODUCTION, male and female

 gametes (i.e. sperm and ova) fuse to produce a new DIPLOID cell

 with a pair of chromosomes.

 In [HOLLAND92] the sentence "When sperm and ova fuse, matching

 chromosomes line up with one another their length, thus swapping

 genetic material" is thus wrong, since these two activities

 occur in different parts of the life cycle. [eds note: If

 sexual reproduction (the Real Thing) worked like in GAs, then

 Holland would be right, but as we all know, it's not the

 case. We just encountered a Freudian slip of a Grandmaster.

 BTW: even the German translation of this article has this

 "bug", although it's well-hidden by the translator.]

 CS: See CLASSIFIER SYSTEM.

 D

 DARWINISM:

 (biol) Theory of EVOLUTION, proposed by Darwin, that evolution

 comes about through random variation of heritable

 characteristics, coupled with natural SELECTION (survival of the

 fittest). A physical mechanism for this, in terms of GENEs and

 CHROMOSOMEs, was discovered many years later. DARWINISM was

 combined with the selectionism of Weismann and the genetics of

 Mendel to form the Neo-Darwinian Synthesis during the

 1930s-1950s by T. Dobzhansky, E. Mayr, G. Simpson, R. Fisher, S.

 Wright, and others. cf LAMARCKISM.

 The talk.origins FAQ contains more details (See Q10.7). Also,

 the "Dictionary of Darwinism and of Evolution" (Ed. by Patrick

 Tort) was published in early 1996. It contains a vast amount of

 information about what Darwinism is and (perhaps more

 importantly) is not. Further information from

 http://www.planete.net/~ptort/darwin/evolengl.html (in various

 languages).

 (EC) Theory which inspired all branches of EC.

 DECEPTION:

 The condition where the combination of good BUILDING BLOCKs

 leads to reduced FITNESS, rather than increased fitness.

 Proposed by [GOLD89] as a reason for the failure of GAs on many

 tasks.

 DIPLOID:

 (biol) This refers to a cell which contains two copies of each

 CHROMOSOME. The copies are homologous i.e. they contain the

 same GENEs in the same sequence. In many sexually reproducing

 SPECIES, the genes in one of the sets of chromosomes will have

 been inherited from the father's GAMETE (sperm), while the genes

 in the other set of chromosomes are from the mother's gamete

 (ovum).

 DNA: (biol) Deoxyribonucleic Acid, a double stranded macromolecule of

 helical structure (comparable to a spiral staircase). Both

 single strands are linear, unbranched nucleic acid molecules

 build up from alternating deoxyribose (sugar) and phosphate

 molecules. Each deoxyribose part is coupled to a nucleotide

 base, which is responsible for establishing the connection to

 the other strand of the DNA. The 4 nucleotide bases Adenine

 (A), Thymine (T), Cytosine (C) and Guanine (G) are the alphabet

 of the genetic information. The sequences of these bases in the

 DNA molecule determines the building plan of any organism. [eds

 note: suggested reading: James D. Watson (1968) "The Double

 Helix", London: Weidenfeld and Nicholson]

 (literature) Douglas Noel Adams, contemporary Science Fiction

 comedy writer. Published "The Hitch-Hiker's Guide to the Galaxy"

 when he was 25 years old, which made him one of the currently

 most successful British authors. [eds note: interestingly

 Watson was also 25 years old, when he discovered the DNA; both

 events are probably not interconnected; you might also want to

 look at: Neil Gaiman's (1987) "DON'T PANIC -- The Official

 Hitch-Hiker's Guide to the Galaxy companion", and of course get

 your hands on the wholly remarkable FAQ in alt.fan.douglas-adams

]

 DNS: (biol) Desoxyribonukleinsaeure, German for DNA.

 (comp) The Domain Name System, a distributed database system for

 translating computer names (e.g. lumpi.informatik.uni-

 dortmund.de) into numeric Internet, i.e. IP-addresses

 (129.217.36.140) and vice-versa. DNS allows you to hook into

 the net without remembering long lists of numeric references,

 unless your system administrator has incorrectly set-up your

 site's system.

 E

 EA: See EVOLUTIONARY ALGORITHM.

 EC: See EVOLUTIONARY COMPUTATION.

 ELITISM:

 ELITISM (or an elitist strategy) is a mechanism which is

 employed in some EAs which ensures that the CHROMOSOMEs of the

 most highly fit member(s) of the POPULATION are passed on to the

 next GENERATION without being altered by GENETIC OPERATORs.

 Using elitism ensures that the mamimum FITNESS of the population

 can never reduce from one generation to the next. Elitism

 usually brings about a more rapid convergence of the population.

 In some applications elitism improves the chances of locating an

 optimal INDIVIDUAL, while in others it reduces it.

 ENCORE:

 The EvolutioNary Computation REpository Network. An collection

 of FTP servers/World Wide Web sites holding all manner of

 interesting things related to EC. See Q15.3 for more

 information.

 ENVIRONMENT:

 (biol) That which surrounds an organism. Can be 'physical'

 (abiotic), or biotic. In both, the organism occupies a NICHE

 which influences its FITNESS within the total ENVIRONMENT. A

 biotic environment may present frequency-dependent fitness

 functions within a POPULATION, that is, the fitness of an

 organism's behaviour may depend upon how many others are also

 doing it. Over several GENERATIONs, biotic environments may

 foster co-evolution, in which fitness is determined with

 SELECTION partly by other SPECIES.

 EP: See EVOLUTIONARY PROGRAMMING.

 EPISTASIS:

 (biol) A "masking" or "switching" effect among GENEs. A biology

 textbook says: "A gene is said to be epistatic when its presence

 suppresses the effect of a gene at another locus. Epistatic

 genes are sometimes called inhibiting genes because of their

 effect on other genes which are described as hypostatic."

 (EC) When EC researchers use the term EPISTASIS, they are

 generally referring to any kind of strong interaction among

 genes, not just masking effects. A possible definition is:

 Epistasis is the interaction between different genes in a

 CHROMOSOME. It is the extent to which the contribution to

 FITNESS of one gene depends on the values of other genes.

 Problems with little or no epistasis are trivial to solve

 (hillclimbing is sufficient). But highly epistatic problems are

 difficult to solve, even for GAs. High epistasis means that

 BUILDING BLOCKs cannot form, and there will be DECEPTION.

 ES: See EVOLUTION STRATEGY.

 EVOLUTION:

 That process of change which is assured given a reproductive

 POPULATION in which there are (1) varieties of INDIVIDUALs, with

 some varieties being (2) heritable, of which some varieties (3)

 differ in FITNESS (reproductive success). (See the talk.origins

 FAQ for discussion on this (See Q10.7).)

 "Don't assume that all people who accept EVOLUTION are atheists"

 --- Talk.origins FAQ

 EVOLUTION STRATEGIE:

 EVOLUTION STRATEGY:

 A type of EVOLUTIONARY ALGORITHM developed in the early 1960s in

 Germany. It employs real-coded parameters, and in its original

 form, it relied on MUTATION as the search operator, and a

 POPULATION size of one. Since then it has evolved to share many

 features with GENETIC ALGORITHMs. See Q1.3 for more

 information.

 EVOLUTIONARILY STABLE STRATEGY:

 A strategy that does well in a POPULATION dominated by the same

 strategy. (cf Maynard Smith, 1974) Or, in other words, "An

 'ESS' ... is a strategy such that, if all the members of a

 population adopt it, no mutant strategy can invade." (Maynard

 Smith "Evolution and the Theory of Games", 1982).

 EVOLUTIONARY ALGORITHM:

 A algorithm designed to perform EVOLUTIONARY COMPUTATION.

 EVOLUTIONARY COMPUTATION:

 Encompasses methods of simulating EVOLUTION on a computer. The

 term is relatively new and represents an effort bring together

 researchers who have been working in closely related fields but

 following different paradigms. The field is now seen as

 including research in GENETIC ALGORITHMs, EVOLUTION STRATEGIEs,

 EVOLUTIONARY PROGRAMMING, ARTIFICIAL LIFE, and so forth. For a

 good overview see the editorial introduction to Vol. 1, No. 1 of

 "Evolutionary Computation" (MIT Press, 1993). That, along with

 the papers in the issue, should give you a good idea of

 representative research.

 EVOLUTIONARY PROGRAMMING:

 An evolutionay algorithm developed in the mid 1960s. It is a

 stochastic OPTIMIZATION strategy, which is similar to GENETIC

 ALGORITHMs, but dispenses with both "genomic" representations

 and with CROSSOVER as a REPRODUCTION OPERATOR. See Q1.2 for

 more information.

 EVOLUTIONARY SYSTEMS:

 A process or system which employs the evolutionary dynamics of

 REPRODUCTION, MUTATION, competition and SELECTION. The specific

 forms of these processes are irrelevant to a system being

 described as "evolutionary."

 EXPECTANCY:

 Or expected value. Pertaining to a random variable X, for a

 continuous random variable, the expected value is:

 E(X) = INTEGRAL(-inf, inf) [X f(X) dX].

 The discrete expectation takes a similar form using a summation

 instead of an integral.

 EXPLOITATION:

 When traversing a SEARCH SPACE, EXPLOITATION is the process of

 using information gathered from previously visited points in the

 search space to determine which places might be profitable to

 visit next. An example is hillclimbing, which investigates

 adjacent points in the search space, and moves in the direction

 giving the greatest increase in FITNESS. Exploitation

 techniques are good at finding local maxima.

 EXPLORATION:

 The process of visiting entirely new regions of a SEARCH SPACE,

 to see if anything promising may be found there. Unlike

 EXPLOITATION, EXPLORATION involves leaps into the unknown.

 Problems which have many local maxima can sometimes only be

 solved by this sort of random search.

 F

 FAQ: Frequently Asked Questions. See definition given before the main

 table of contents.

 FITNESS:

 (biol) Loosely: adaptedness. Often measured as, and sometimes

 equated to, relative reproductive success. Also proportional to

 expected time to extinction. "The fit are those who fit their

 existing ENVIRONMENTs and whose descendants will fit future

 environments." (J. Thoday, "A Century of Darwin", 1959).

 Accidents of history are relevant.

 (EC) A value assigned to an INDIVIDUAL which reflects how well

 the individual solves the task in hand. A "fitness function" is

 used to map a CHROMOSOME to a FITNESS value. A "fitness

 landscape" is the hypersurface obtained by applying the fitness

 function to every point in the SEARCH SPACE.

 FUNCTION OPTIMIZATION:

 For a function which takes a set of N input parameters, and

 returns a single output value, F, FUNCTION OPTIMIZATION is the

 task of finding the set(s) of parameters which produce the

 maximum (or minimum) value of F. Function OPTIMIZATION is a type

 of VALUE-BASED PROBLEM.

 FTP: File Transfer Protocol. A system which allows the retrieval of

 files stored on a remote computer. Basic FTP requires a password

 before access can be gained to the remote computer. Anonymous

 FTP does not require a special password: after giving

 "anonymous" as the user name, any password will do (typically,

 you give your email address at this point). Files available by

 FTP are specified as <ftp-site-name>:<the-complete-filename> See

 Q15.5.

 FUNCTION SET:

 (GP) The set of operators used in GP. These functions label the

 internal (non-leaf) points of the parse trees that represent the

 programs in the POPULATION. An example FUNCTION SET might be

 {+, -, *}.

 G

 GA: See GENETIC ALGORITHM.

 GAME THEORY:

 A mathematical theory originally developed for human games, and

 generalized to human economics and military strategy, and to

 EVOLUTION in the theory of EVOLUTIONARILY STABLE STRATEGY. GAME

 THEORY comes into its own wherever the optimum policy is not

 fixed, but depends upon the policy which is statistically most

 likely to be adopted by opponents.

 GAMETE:

 (biol) Cells which carry genetic information from their PARENTs

 for the purposes of sexual REPRODUCTION. In animals, male

 GAMETEs are called sperm, female gametes are called ova. Gametes

 have a HAPLOID number of CHROMOSOMEs.

 GAUSSIAN DISTRIBUTION:

 See NORMALLY DISTRIBUTED.

 GENE:

 (EC) A subsection of a CHROMOSOME which (usually) encodes the

 value of a single parameter.

 (biol) The fundamental unit of inheritance, comprising a segment

 of DNA that codes for one or several related functions and

 occupies a fixed position (locus) on the chromosome. However,

 the term may be defined in different ways for different

 purposes. For a fuller story, consult a book on genetics (See

 Q10.7).

 GENE-POOL:

 The whole set of GENEs in a breeding POPULATION. The metaphor

 on which the term is based de-emphasizes the undeniable fact

 that genes actually go about in discrete bodies, and emphasizes

 the idea of genes flowing about the world like a liquid.

 Everybody out of the gene-pool, now!

 --- Author prefers to be anonymous

 GENERATION:

 (EC) An iteration of the measurement of FITNESS and the creation

 of a new POPULATION by means of REPRODUCTION OPERATORs.

 GENETIC ALGORITHM:

 A type of EVOLUTIONARY COMPUTATION devised by John Holland

 [HOLLAND92]. A model of machine learning that uses a

 genetic/evolutionary metaphor. Implementations typically use

 fixed-length character strings to represent their genetic

 information, together with a POPULATION of INDIVIDUALs which

 undergo CROSSOVER and MUTATION in order to find interesting

 regions of the SEARCH SPACE. See Q1.1 for more information.

 GENETIC DRIFT:

 Changes in gene/allele frequencies in a POPULATION over many

 GENERATIONs, resulting from chance rather than SELECTION.

 Occurs most rapidly in small populations. Can lead to some

 ALLELEs becoming `extinct', thus reducing the genetic

 variability in the population.

 GENETIC PROGRAMMING:

 GENETIC ALGORITHMs applied to programs. GENETIC PROGRAMMING is

 more expressive than fixed-length character string GAs, though

 GAs are likely to be more efficient for some classes of

 problems. See Q1.5 for more information.

 GENETIC OPERATOR:

 A search operator acting on a coding structure that is analogous

 to a GENOTYPE of an organism (e.g. a CHROMOSOME).

 GENOTYPE:

 The genetic composition of an organism: the information

 contained in the GENOME.

 GENOME:

 The entire collection of GENEs (and hence CHROMOSOMEs) possessed

 by an organism.

 GLOBAL OPTIMIZATION:

 The process by which a search is made for the extremum (or

 extrema) of a functional which, in EVOLUTIONARY COMPUTATION,

 corresponds to the FITNESS or error function that is used to

 assess the PERFORMANCE of any INDIVIDUAL.

 GP: See GENETIC PROGRAMMING.

 H

 HAPLOID:

 (biol) This refers to cell which contains a single CHROMOSOME or

 set of chromosomes, each consisting of a single sequence of

 GENEs. An example is a GAMETE. cf DIPLOID.

 In EC, it is usual for INDIVIDUALs to be HAPLOID.

 HARD SELECTION:

 SELECTION acts on competing INDIVIDUALs. When only the best

 available individuals are retained for generating future

 progeny, this is termed "hard selection." In contrast, "soft

 selection" offers a probabilistic mechanism for maitaining

 individuals to be PARENTs of future progeny despite possessing

 relatively poorer objective values.

 I

 INDIVIDUAL:

 A single member of a POPULATION. In EC, each INDIVIDUAL

 contains a CHROMOSOME (or, more generally, a GENOME) which

 represents a possible solution to the task being tackled, i.e. a

 single point in the SEARCH SPACE. Other information is usually

 also stored in each individual, e.g. its FITNESS.

 INVERSION:

 (EC) A REORDERING operator which works by selecting two cut

 points in a CHROMOSOME, and reversing the order of all the GENEs

 between those two points.

 L

 LAMARCKISM:

 Theory of EVOLUTION which preceded Darwin's. Lamarck believed

 that evolution came about through the inheritance of acquired

 characteristics. That is, the skills or physical features which

 an INDIVIDUAL acquires during its lifetime can be passed on to

 its OFFSPRING. Although Lamarckian inheritance does not take

 place in nature, the idea has been usefully applied by some in

 EC. cf DARWINISM.

 LCS: See LEARNING CLASSIFIER SYSTEM.

 LEARNING CLASSIFIER SYSTEM:

 A CLASSIFIER SYSTEM which "learns" how to classify its inputs.

 This often involves "showing" the system many examples of input

 patterns, and their corresponding correct outputs. See Q1.4 for

 more information.

 M

 MIGRATION:

 The transfer of (the GENEs of) an INDIVIDUAL from one SUB-

 POPULATION to another.

 MOBOT:

 MOBile ROBOT. cf ROBOT.

 MUTATION:

 (EC) a REPRODUCTION OPERATOR which forms a new CHROMOSOME by

 making (usually small) alterations to the values of GENEs in a

 copy of a single, PARENT chromosome.

 N

 NFL: See NO FREE LUNCH.

 NICHE:

 (biol) In natural ecosystems, there are many different ways in

 which animals may survive (grazing, hunting, on the ground, in

 trees, etc.), and each survival strategy is called an

 "ecological niche." SPECIES which occupy different NICHEs (e.g.

 one eating plants, the other eating insects) may coexist side by

 side without competition, in a stable way. But if two species

 occupying the same niche are brought into the same area, there

 will be competition, and eventually the weaker of the two

 species will be made (locally) extinct. Hence diversity of

 species depends on them occupying a diversity of niches (or on

 geographical separation).

 (EC) In EC, we often want to maintain diversity in the

 POPULATION. Sometimes a FITNESS function may be known to be

 multimodal, and we want to locate all the peaks. We may consider

 each peak in the fitness function as analogous to a niche. By

 applying techniques such as fitness sharing (Goldberg &

 Richardson, [ICGA87]), the population can be prevented from

 converging on a single peak, and instead stable SUB-POPULATIONs

 form at each peak. This is analogous to different species

 occupying different niches. See also SPECIES, SPECIATION.

 NO FREE LUNCH:

 Cocktail party definition:

 For any pair of search algorithms, there are "as many" problems

 for which the first algorithm outperforms the second as for

 which the reverse is true. One consequence of this is that if we

 don't put any domain knowledge into our algorithm, it is as

 likely to perform worse than random search as it is likely to

 perform better. This is true for all algorimths including

 GENETIC ALGORITHMs.

 More detailed description:

 The NFL work of Wolpert and Macready is a framework that

 addresses the core aspects of search, focusing on the connection

 between FITNESS functions and effective search algorithms. The

 central importance of this connection is demonstrated by the No

 Free Lunch theorem which states that averaged over all problems,

 all search algorithms perform equally. This result implies that

 if we are comparing a genetic algorithm to some other algorithm

 (e.g., simulated annealing, or even random search) and the

 genetic algorithm performs better on some class of problems,

 then the other algorithm necessarily performs better on problems

 outside the class. Thus it is essential to incorporate knowledge

 of the problem into the search algorithm.

 The NFL framework also does the following: it provides a

 geometric interpretation of what it means for an algorithm to be

 well matched to a problem; it provides information theoretic

 insight into the search procedure; it investigates time-varying

 fitness functions; it proves that independent of the fitness

 function, one cannot (without prior domain knowledge)

 successfully choose between two algorithms based on their

 previous behavior; it provides a number of formal measures of

 how well an algorithm performs; and it addresses the difficulty

 of OPTIMIZATION problems from a viewpoint outside of traditional

 computational complexity.

 NORMALLY DISTRIBUTED:

 A random variable is NORMALLY DISTRIBUTED if its density

 function is described as

 f(x) = 1/sqrt(2*pi*sqr(sigma)) * exp(-0.5*(x-mu)*(x-

 mu)/sqr(sigma))

 where mu is the mean of the random variable x and sigma is the

 STANDARD DEVIATION.

 O

 OBJECT VARIABLES:

 Parameters that are directly involved in assessing the relative

 worth of an INDIVIDUAL.

 OFFSPRING:

 An INDIVIDUAL generated by any process of REPRODUCTION.

 OPTIMIZATION:

 The process of iteratively improving the solution to a problem

 with respect to a specified objective function.

 ORDER-BASED PROBLEM:

 A problem where the solution must be specified in terms of an

 arrangement (e.g. a linear ordering) of specific items, e.g.

 TRAVELLING SALESMAN PROBLEM, computer process scheduling.

 ORDER-BASED PROBLEMs are a class of COMBINATORIAL OPTIMIZATION

 problems in which the entities to be combined are already

 determined. cf VALUE-BASED PROBLEM.

 ONTOGENESIS:

 Refers to a single organism, and means the life span of an

 organism from its birth to death. cf PHYLOGENESIS.

 P

 PANMICTIC POPULATION:

 (EC, biol) A mixed POPULATION. A population in which any

 INDIVIDUAL may be mated with any other individual with a

 probability which depends only on FITNESS. Most conventional

 EVOLUTIONARY ALGORITHMs have PANMICTIC POPULATIONs.

 The opposite is a population divided into groups known as SUB-

 POPULATIONs, where individuals may only mate with others in the

 same sub-population. cf SPECIATION.

 PARENT:

 An INDIVIDUAL which takes part in REPRODUCTION to generate one

 or more other individuals, known as OFFSPRING, or children.

 PERFORMANCE:

 cf FITNESS.

 PHENOTYPE:

 The expressed traits of an INDIVIDUAL.

 PHYLOGENESIS:

 Refers to a POPULATION of organisms. The life span of a

 population of organisms from pre-historic times until today. cf

 ONTOGENESIS.

 PLUS STRATEGY:

 Notation originally proposed in EVOLUTION STRATEGIEs, when a

 POPULATION of "mu" PARENTs generates "lambda" OFFSPRING and all

 mu and lambda INDIVIDUALs compete directly, the process is

 written as a (mu+lambda) search. The process of competing all

 parents and offspring then is a "plus strategy." cf. COMMA

 STRATEGY.

 POPULATION:

 A group of INDIVIDUALs which may interact together, for example

 by mating, producing OFFSPRING, etc. Typical POPULATION sizes in

 EC range from 1 (for certain EVOLUTION STRATEGIEs)

 to many thousands (for GENETIC PROGRAMMING). cf SUB-

 POPULATION.

 R

 RECOMBINATION:

 cf CROSSOVER.

 REORDERING:

 (EC) A REORDERING operator is a REPRODUCTION OPERATOR which

 changes the order of GENEs in a CHROMOSOME, with the hope of

 bringing related genes closer together, thereby facilitating the

 production of BUILDING BLOCKs. cf INVERSION.

 REPRODUCTION:

 (biol, EC) The creation of a new INDIVIDUAL from two PARENTs

 (sexual REPRODUCTION). Asexual reproduction is the creation of

 a new individual from a single parent.

 REPRODUCTION OPERATOR:

 (EC) A mechanism which influences the way in which genetic

 information is passed on from PARENT(s) to OFFSPRING during

 REPRODUCTION. REPRODUCTION OPERATORs fall into three broad

 categories: CROSSOVER, MUTATION and REORDERING operators.

 REQUISITE VARIETY:

 In GENETIC ALGORITHMs, when the POPULATION fails to have a

 "requisite variety" CROSSOVER will no longer be a useful search

 operator because it will have a propensity to simply regenerate

 the PARENTs.

 ROBOT:

 "The Encyclopedia Galactica defines a ROBOT as a mechanical

 apparatus designed to do the work of man. The marketing division

 of the Sirius Cybernetics Corporation defines a robot as `Your

 Plastic Pal Who's Fun To Be With'."

 --- Douglas Adams (1979)

 S

 SAFIER:

 An EVOLUTIONARY COMPUTATION FTP Repository, now defunct.

 Superceeded by ENCORE.

 SCHEMA:

 A pattern of GENE values in a CHROMOSOME, which may include

 `dont care' states. Thus in a binary chromosome, each SCHEMA

 (plural schemata) can be specified by a string of the same

 length as the chromosome, with each character one of {0, 1, #}.

 A particular chromosome is said to `contain' a particular schema

 if it matches the schema (e.g. chromosome 01101 matches schema

 #1#0#).

 The `order' of a schema is the number of non-dont-care positions

 specified, while the `defining length' is the distance between

 the furthest two non-dont-care positions. Thus #1##0# is of

 order 2 and defining length 3.

 SCHEMA THEOREM:

 Theorem devised by Holland [HOLLAND92] to explain the behaviour

 of GAs. In essence, it says that a GA gives exponentially

 increasing reproductive trials to above average schemata.

 Because each CHROMOSOME contains a great many schemata, the rate

 of SCHEMA processing in the POPULATION is very high, leading to

 a phenomenon known as implicit parallelism. This gives a GA with

 a population of size N a speedup by a factor of N cubed,

 compared to a random search.

 SEARCH SPACE:

 If the solution to a task can be represented by a set of N real-

 valued parameters, then the job of finding this solution can be

 thought of as a search in an N-dimensional space. This is

 referred to simply as the SEARCH SPACE. More generally, if the

 solution to a task can be represented using a representation

 scheme, R, then the search space is the set of all possible

 configurations which may be represented in R.

 SEARCH OPERATORS:

 Processes used to generate new INDIVIDUALs to be evaluated.

 SEARCH OPERATORS in GENETIC ALGORITHMs are typically based on

 CROSSOVER and point MUTATION. Search operators in EVOLUTION

 STRATEGIEs and EVOLUTIONARY PROGRAMMING typically follow from

 the representation of a solution and often involve Gaussian or

 lognormal perturbations when applied to real-valued vectors.

 SELECTION:

 The process by which some INDIVIDUALs in a POPULATION are chosen

 for REPRODUCTION, typically on the basis of favoring individuals

 with higher FITNESS.

 SELF-ADAPTATION:

 The inclusion of a mechanism not only to evolve the OBJECT

 VARIABLES of a solution, but simultaneously to evolve

 information on how each solution will generate new OFFSPRING.

 SIMULATION:

 The act of modeling a natural process.

 SOFT SELECTION:

 The mechanism which allows inferior INDIVIDUALs in a POPULATION

 a non-zero probability of surviving into future GENERATIONs.

 See HARD SELECTION.

 SPECIATION:

 (biol) The process whereby a new SPECIES comes about. The most

 common cause of SPECIATION is that of geographical isolation. If

 a SUB-POPULATION of a single species is separated geographically

 from the main POPULATION for a sufficiently long time, their

 GENEs will diverge (either due to differences in SELECTION

 pressures in different locations, or simply due to GENETIC

 DRIFT). Eventually, genetic differences will be so great that

 members of the sub-population must be considered as belonging to

 a different (and new) species.

 Speciation is very important in evolutionary biology. Small sub-

 populations can evolve much more rapidly than a large population

 (because genetic changes don't take long to become fixed in the

 population). Sometimes, this EVOLUTION will produce superior

 INDIVIDUALs which can outcompete, and eventually replace the

 species of the original, main population.

 (EC) Techniques analogous to geographical isolation are used in

 a number of GAs. Typically, the population is divided into sub-

 populations, and individuals are only allowed to mate with

 others in the same sub-population. (A small amount of MIGRATION

 is performed.)

 This produces many sub-populations which differ in their

 characteristics, and may be referred to as different "species".

 This technique can be useful for finding multiple solutions to a

 problem, or simply maintaining diversity in the SEARCH SPACE.

 Most biology/genetics textbooks contain information on

 speciation. A more detailed account can be found in "Genetics,

 Speciation and the Founder Principle", L.V. Giddings, K.Y.

 Kaneshiro and W.W. Anderson (Eds.), Oxford University Press

 1989.

 SPECIES:

 (biol) There is no universally-agreed firm definition of a

 SPECIES. A species may be roughly defined as a collection of

 living creatures, having similar characteristics, which can

 breed together to produce viable OFFSPRING similar to their

 PARENTs. Members of one species occupy the same ecological

 NICHE. (Members of different species may occupy the same, or

 different niches.)

 (EC) In EC the definition of "species" is less clear, since

 generally it is always possible for a pair INDIVIDUALs to breed

 together. It is probably safest to use this term only in the

 context of algorithms which employ explicit SPECIATION

 mechanisms.

 (biol) The existence of different species allows different

 ecological niches to be exploited. Furthermore, the existence of

 a variety of different species itself creates new niches, thus

 allowing room for further species. Thus nature bootstraps itself

 into almost limitless complexity and diversity.

 Conversely, the domination of one, or a small number of species

 reduces the number of viable niches, leads to a decline in

 diversity, and a reduction in the ability to cope with new

 situations.

 "Give any one species too much rope, and they'll fuck it up"

 --- Roger Waters, "Amused to Death", 1992

 STANDARD DEVIATION:

 A measurement for the spread of a set of data; a measurement for

 the variation of a random variable.

 STATISTICS:

 Descriptive measures of data; a field of mathematics that uses

 probability theory to gain insight into systems' behavior.

 STEPSIZE:

 Typically, the average distance in the appropriate space between

 a PARENT and its OFFSPRING.

 STRATEGY VARIABLE:

 Evolvable parameters that relate the distribution of OFFSPRING

 from a PARENT.

 SUB-POPULATION:

 A POPULATION may be sub-divided into groups, known as SUB-

 POPULATIONs, where INDIVIDUALs may only mate with others in the

 same group. (This technique might be chosen for parallel

 processors). Such sub-divisions may markedly influence the

 evolutionary dynamics of a population (e.g. Wright's 'shifting

 balance' model). Sub-populations may be defined by various

 MIGRATION constraints: islands with limited arbitrary migration;

 stepping-stones with migration to neighboring islands;

 isolation-by-distance in which each individual mates only with

 near neighbors. cf PANMICTIC POPULATION, SPECIATION.

 SUMMERSCHOOL:

 (USA) One of the most interesting things in the US educational

 system: class work during the summer break.

 T

 TERMINAL SET:

 (GP) The set of terminal (leaf) nodes in the parse trees

 representing the programs in the POPULATION. A terminal might

 be a variable, such as X, a constant value, such as 42, (cf Q42)

 or a function taking no arguments, such as (move-north).

 TRAVELLING SALESMAN PROBLEM:

 The travelling salesperson has the task of visiting a number of

 clients, located in different cities. The problem to solve is:

 in what order should the cities be visited in order to minimise

 the total distance travelled (including returning home)? This is

 a classical example of an ORDER-BASED PROBLEM.

 TSP: See TRAVELLING SALESMAN PROBLEM.

 U

 USENET:

 "Usenet is like a herd of performing elephants with diarrhea --

 massive, difficult to redirect, awe-inspiring, entertaining, and

 a source of mind-boggling amounts of excrement when you least

 expect it."

 --- Gene Spafford (1992)

 V

 VALUE-BASED PROBLEM:

 A problem where the solution must be specified in terms of a set

 of real-valued parameters. FUNCTION OPTIMIZATION problems are

 of this type. cf SEARCH SPACE, ORDER-BASED PROBLEM.

 VECTOR OPTIMIZATION:

 Typically, an OPTIMIZATION problem wherein multiple objectives

 must be satisfied.

 Z

 ZEN NAVIGATION:

 A methodology with a tremendous propensity to get lost during a

 hike from A to B. Zen Navigation simply consists of finding

 something that looks as if it knows where it is going, and

 following it. The results are often more surprising than

 successful, but its usually worth using for the sake of the few

 occasions when it is both.

 Sometimes Zen Navigation is referred to as "doing scientific

 research," where A is a state of mind considered as being pre-

 PhD, and B is a (usually a different) state of mind, known as

 post-PhD. Your time spent in state C, somewhere inbetween A and

 B, is usually referred to as "being a nobody."

ACKNOWLEDGMENTS

 Finally, credit where credit is due. I'd like to thank all the people

 who helped in assembling this guide, and their patience with my

 "variations on English grammar". In the order I received their

 contributions, thanks to:

 Contributors,

 Lutz Prechelt (University of Karlsruhe) the comp.ai.neural-nets

 FAQmeister, for letting me strip several ideas from "his" FAQ.

 Ritesh "peace" Bansal (CMU) for lots of comments and references.

 David Beasley (University of Wales) for a valuable list of

 publications (Q12), and many further additions. David Corne, Peter

 Ross, and Hsiao-Lan Fang (University of Edinburgh) for their

 TIMETABLING and JSSP entries. Mark Kantrowitz (CMU) for mocking

 about this-and-that, and being a "mostly valuable" source concerning

 FAQ maintenance; parts of Q11 have been stripped from "his" ai-

 faq/part4 FAQ; Mark also contributed the less verbose archive server

 infos. The texts of Q1.1, Q1.5, Q98 and some entries of Q99 are

 courtesy by James Rice (Stanford University), stripped from his

 genetic-programming FAQ (Q15). Jonathan I. Kamens (MIT) provided

 infos on how-to-hook-into the USENET FAQ system. Una Smith (Yale

 University) contributed the better parts of the Internet resources

 guide (Q15.5). Daniel Polani (Gutenberg University, Mainz)

 "contributed" the ALIFE II Video proceedings info. Jim McCoy

 (University of Texas) reminded me of the GP archive he maintains

 (Q20). Ron Goldthwaite (UC Davis) added definitions of Environment,

 EVOLUTION, Fitness, and Population to the glossary, and some thoughts

 why Biologists should take note of EC (Q3). Joachim Geidel

 (University of Karlsruhe) sent a diff of the current "navy server"

 contents and the software survey, pointing to "missing links" (Q20).

 Richard Dawkins "Glossary" section of "The extended phenotype" served

 for many new entries, too numerous to mention here (Q99). Mark Davis

 (New Mexico State University) wrote the part on EVOLUTIONARY

 PROGRAMMING (Q1.2). Dan Abell (University of Maryland) contributed

 the section on efficient greycoding (Q21). Walter Harms (University

 of Oldenburg) commented on introductory EC literature. Lieutenant

 Colonel J.S. Robertson (USMA, West Point), for providing a home for

 this subversive posting on their FTP server

 euler.math.usma.edu/pub/misc/GA Rosie O'Neill for suggesting the PhD

 thesis entry (Q10.11). Charlie Pearce (University of Nottingham) for

 critical remarks concerning "tables"; well, here they are! J.

 Ribeiro Filho (University College London) for the pointer to the IEEE

 Computer GA Software Survey; the PeGAsuS description (Q20) was

 stripped from it. Paul Harrald for the entry on game playing (Q2).

 Laurence Moran (Uni Toronto) for corrections to some of the

 biological information in Q1 and Q99. Marco Dorigo (Uni Libre

 Bruxelles) gets the award for reading the guide more thoroughly than

 (including the editors). He suggested additions to Q1.4, Q2, Q4 and

 Q22, and pointed out various typos. Bill Macready (SFI) for the two

 defintions of the NFL theorem in Q99. Cedric Notredame (EBI) for

 providing information about applications of EC in biology (Q2).

 Fabio Pichierri (The Institute of Physical and Chemical Research) for

 information on the relevance of EC to chemists (Q3). Moshe Sipper

 (Swiss Federal Institute of Technology) for details of applications

 in Cellular Automata and Evolvable Hardware (Q2). Hugh Sasse

 (DeMontfort University) for tracking down missing/outdated URLs in

 Q1.5 and Q15.2.

 Reviewers,

 Robert Elliott Smith (The University of Alabama) reviewed the TCGA

 infos (Q14), and Nici Schraudolph (UCSD) first unconsciously, later

 consciously, provided about 97% of Q20* answers. Nicheal Lynn Cramer

 (BBN) adjusted my historic view of GP genesis. David Fogel (Natural

 SELECTION, Inc.) commented and helped on this-and-that (where this-

 and-that is closely related to EP), and provided many missing entries

 for the glossary (Q99). Kazuhiro M. Saito (MIT) and Mark D. Smucker

 (Iowa State) caught my favorite typo(s). Craig W. Reynolds was the

 first who solved one of the well-hidden puzzles in the FAQ, and also

 added some valuable stuff. Joachim Born (TU Berlin) updated the

 EVOLUTION Machine (EM) entry and provided the pointer to the Bionics

 technical report FTP site (Q14). Pattie Maes (MIT Media Lab)

 reviewed the ALIFE IV additions to the list of conferences (Q12).

 Scott D. Yelich (Santa Fe Institute) reviewed the SFI connectivity

 entry (Q15). Rick Riolo (MERIT) reviewed the CFS-C entry (Q20).

 Davika Seunarine (Acadia Univ.) for smoothing out this and that.

 Paul Field (Queen Mary and Westfield College) for correcting typos,

 and providing insights into the blindfold pogo-sticking nomads of the

 Himalayas.

 and Everybody...

 Last not least I'd like to thank Hans-Paul Schwefel, Thomas Baeck,

 Frank Kursawe, Guenter Rudolph for their contributions, and the rest

 of the Systems Analysis Research Group for wholly remarkable patience

 and almost incredible unflappability during my various extravangances

 and ego-trips during my time (1990-1993) with this group.

 It was a tremendously worthwhile experience. Thanks!

 --- The Editor, Joerg Heitkoetter (1993)

EPILOGUE

 "Natural selection is a mechanism for generating

 an exceedingly high degree of improbability."

 --- Sir Ronald Aylmer Fisher (1890-1962)

 This is a GREAT quotation, it sounds like something directly out of a

turn of the century Douglas Adams: Natural selection: the original

 "Infinite Improbability Drive"

 --- Craig Reynolds (1993), on reading the previous quote

 `The Babel fish,' said The Hitch Hiker's Guide to the Galaxy quietly,

 `is small, yellow and leech-like, and probably the oddest thing in

 the Universe. It feeds on brainwave energy received not from his own

 carrier but from those around it. It absorbs all unconscious mental

 frequencies from this brainwave energy to nourish itself with. It

 then excretes into the mind of its carrier a telepathic matrix formed

 by combining the conscious thought frequencies with nerve signals

 picked up from the speech centers of the brain which has supplied

 them. The practical upshot of all this is that if you stick a Babel

 fish in your ear you can instantly understand anything said to you in

 any form of language. The speech patterns you actually hear decode

 the brainwave matrix which has been fed into your mind by your Babel

 fish. `Now it is such a bizarrely improbable coincidence than

 anything so mindbogglingly useful could have evolved purely by chance

 that some thinkers have chosen to see it as a final and clinching

 proof of the non-existence of God. `The argument goes something like

 this: ``I refuse to prove that I exist,'' says God, ``for proof

 denies faith, and without faith I am nothing.'' ``But,'' says Man,

 ``The Babel fish is a dead giveaway isn't it? It could not have

 evolved by chance. It proves you exist, and so therefore, by your own

 arguments, you don't. QED.'' ``Oh dear,'' says God, ``I hadn't

 thought of that,'' and promptly vanishes in a puff of logic. ``Oh,

 that was easy,'' says Man, and for an encore goes on to prove that

 black is white and gets himself killed on the next zebra crossing.

 --- Douglas Adams (1979)

 "Well, people; I really wish this thingie to turn into a paper babel-

 fish for all those young ape-descended organic life forms on this

 crazy planet, who don't have any clue about what's going on in this

 exciting "new" research field, called EVOLUTIONARY COMPUTATION.

 However, this is just a start, I need your help to increase the

 usefulness of this guide, especially its readability for natively

 English speaking folks; whatever it is: I'd like to hear from

 you...!"

 --- The Editor, Joerg Heitkoetter (1993)

 "Parents of young organic life forms should be warned, that

 paper babel-fishes can be harmful, if stuck too deep into the ear."

--- Encyclopedia Galactica

 "The meeting of these guys was definitely the best bang since the big

 one."

 --- Encyclopedia Galactica

ABOUT THE EDITORS

 Joerg Heitkoetter,

 was born in 1965 in Recklinghausen, a small but beautiful 750 year

 old town at the northern rim of the Ruhrgebiet, Germany's coal mining

 and steel belt. He was educated at Hittorf-Gymnasium,

 Recklinghausen, Ruhruniversitaet Bochum (RUB) and Universitaet

 Dortmund (UNIDO), where he read theoretical medicine, psychology,

 biology, philosophy and (for whatever reason) computer sciences.

 He volunteered as a RA in the Biomathematics Research Group from 1987

 to 1989, at the former ``Max-Planck-Institute for Nutrition

 Physiology,'' in Dortmund (since March 1, 1993 renamed to ``MPI for

 Molecular Physiology''), and spent 3 years at the ``Systems Analysis

 Research Group,'' at the Department of Computer Science of UniDO,

 where he wrote a particularly unsuccesful thesis on LEARNING

 CLASSIFIER SYSTEMs. In 1995, after 22 semesters, he finally gave up

 trying to break Chris Langton's semester record, and dropped out of

 the academic circus. Amazingly, he's the R&D and Security manager of

 UUNET Deutschland GmbH, currently working on various interesting

 things in parallel. You may visit his homepage for a mostly complete

 list at http://alife.santafe.edu/~joke/ or

 http://surf.de.uu.net/people/joke

 His electronic publications range from a voluntary job as senior

 editor of the FAQ in Usenet's comp.ai.genetic newsgroup, entitled The

 Hitch-Hiker's Guide to Evolutionary Computation, over many other

 projects he helped bootstrapping, for example Howard Gutowitz' FAQ on

 Cellular Automata, available on USENET via comp.theory.cell-automata

 ,to about a dozen of so-called ``multimediagrams'' written in HTML,

 the language that builds the World-Wide Web. The most useful ones

 being ENCORE, the Evolutionary Computation Repository Network that

 today, after several years of weekend hacking, is accessible world-

 wide. And the latest additions: Zooland, the definite collection of

 pointers to ARTIFICIAL LIFE resources on the 'net.

 With Adam Gaffin, a former senior newspaper reporter from Middlesex

 News, Boston, MA, who is now with Networks World, he edited the most

 read book on Internet, that was launched by a joined venture of Mitch

 Kapor's Electronic Frontier Foundation (EFF) and the Apple Computer

 Library, initially called Big Dummy's Guide to the Internet it was

 later renamed to EFF's (Extended) Guide to the Internet: A round trip

 through Global Networks, Life in Cyberspace, and Everything...

 http://www.eff.org/

 Since a very special event, he has severe problems to take life

 seriously, and consequently started signing everything with

 ``-joke'', while developing a liquid fixation on all flavours of

 whiskey. He continues to write short stories, novels and works on a

 diary-like lyrics collection of questionable content, entitled A

 Pocketful of Eloquence, which recently was remaned to Heartland, and

 published on the web as: http://surf.de.uu.net/heartland/

 He likes Mickey Rourke's movies (especially Rumblefish and Barfly),

 Edmund Spenser's medieval poetry, the music of QUEEN, KANSAS, and

 MARILLION, McDonald's Hamburgers, diving into the analysis of complex

 systems of any kind, (but prefers the long-legged ones) and the books

 by Erasmus of Rotterdam, Robert Sheckley, Alexei Panshin, and, you

 name it, Douglas Adams.

 Due to circumstances he lead a life on the edge, until he finally

 found the perfect match, which has changed many things drammatically:

 he is not single anymore, will soon have his first child (he

 definitely knows of), although he still has no time to get married.

 He is still known to reject job offers that come bundled with

 Porsches and still doesn't own a BMW Z3 roadster, for he recently

 purchased a red 1996 Ford Probe Medici, enjoying life at 230 kph,

 while listening to the formidable 1975 KANSAS song ``Born On Wings Of

 Steel.''

 He still doesn't live in Surrey, but in Dortmund in a knight's

 castle, which was build in the 16th century and rebuild in the early

 90ies. The building with its tower, park and pond is known as

 Rittergut ``Haus Soelde''.

 NOTABLE WRITINGS

 Nothing really worth listing here.

 David Beasley,

 was born in London, England in 1961. He was educated at Southampton

 University where he read (for good reasons) Electronic Engineering.

 After spending several years at sea, he went to the Department of

 Computing Mathematics of the University of Wales, Cardiff, where he

 studied ARTIFICIAL INTELLIGENCE for a year. He then went on to write

 a thesis on GAs applied to Digital Signal Processing, and tried to

 break Joke's publications record.

 Since a very special event, he has taken over writing this FAQ, and

 consequently started signing everything with ``The FAQmaster'' (He's

 had severe problems taking life seriously for some time before that,

 however.) He likes Woody Allen's movies, English clothing of medieval

 times, especially Marks and Spencer, hates McDonald's Hamburgers, but

 occasionally dives into the analysis of complex systems of any kind,

 (but prefers those with pedals and handlebars) and the books by (of

 course) Douglas Adams.

 He is not married, has no children, and also also doesn't live in

 Surrey.

 He spent several years working for a (mostly interesting) software

 company, Praxis in Bath, England. He left after it became clear that

 the new owners, Deloitte and Touche, had no interest in software

 engineering. He now works for ingenta, a company which provides on-

 line access to learned publications and other on-line services to

 academic users around the world. This includes the long-established

 BIDS reference services. ingenta (http://www.ingenta.com/) are

 based at Bath University, England.

 NOTABLE WRITINGS

 A number of publications related to GENETIC ALGORITHMs. The most

 notable ones being:

 A Sequential Niche Technique for Multimodal Function Optimization,

 Evolutionary Computation, 1(2) pp 101-125, 1993. Available from

 ralph.cs.cf.ac.uk/pub/papers/GAs/seq_niche.ps

 Reducing Epistasis in Combinatorial Problems by Expansive Coding, in

 S. Forrest (ed), Proceedings of the Fifth International Conference on

 Genetic Algorithms, Morgan-Kaufmann, pp 400-407, 1993. Available

 from ralph.cs.cf.ac.uk/pub/papers/GAs/expansive_coding.ps

 An Overview of Genetic Algorithms: Part 1, Fundamentals, University

 Computing, 15(2) pp 58-69, 1993. Alailable from ENCORE (See Q15.3)

 in file: GA/papers/over93.ps.gz or from

 ralph.cs.cf.ac.uk/pub/papers/GAs/ga_overview1.ps

 An Overview of Genetic Algorithms: Part 2, Research Topics,

 University Computing, 15(4) pp 170-181, 1993. Available from Encore

 (See Q15.3) in file: GA/papers/over93-2.ps.gz or from

 ralph.cs.cf.ac.uk/pub/papers/GAs/ga_overview2.ps

 THAT'S ALL FOLKS!

"And all our yesterdays have lighted fools the way to dusty death;

 out, out brief candle; life's but a walking shadow;

 a poor player that struts and frets his hour upon the stage;

 and then is heared no more;

 it is a tale; told by an idiot,

 full of sound and fury,

 signifying nothing."

 --- Shakespeare, Macbeth

 Copyright (c) 1993-1999 by J. Heitkoetter and D. Beasley, all rights

 reserved.

 This FAQ may be posted to any USENET newsgroup, on-line service, or

 BBS as long as it is posted in its entirety and includes this

 copyright statement. This FAQ may not be distributed for financial

 gain. This FAQ may not be included in commercial collections or

 compilations without express permission from the author.

End of ai-faq/genetic/part6
