Natural Niching for Evolving Cooperative Classifiers

Jeffrey Horn
Department of Computer Science
and the Illinois Genetic Algorithms Laboratory
University of Illinois at Urbana-Champaign
117 Transportation Building
104 South Mathews Avenue
Urbana, IL 61801-2996
Phone: 217/333-2346
Fax: 217/244-5705
Email: jeffhorn@uiuc.edu
WWW: http://www.uiuc.edu/ph/www/illigal

David E. Goldberg
Department of General Engineering
and the Illinois Genetic Algorithms Laboratory
University of Illinois at Urbana-Champaign
117 Transportation Building
104 South Mathews Avenue
Urbana, IL 61801-2996
Phone: 217/333-0897
Fax: 217/244-5705
Email: deg@uiuc.edu
WWW: http://www.uiuc.edu/ph/www/illigal

PREPRINT

(camera-ready)

As accepted for publication in J. R. Koza, D. E. Goldberg, D. B. Fogel,
& R. L. Riolo (Ed.s), Genetic Programming, Proceedings of the
First Annual Conference 1996. Cambridge, MA: The MIT Press. 553-564.



Natural Niching for Evolving Cooperative Classifiers

Jeffrey Horn

Department of Computer Science

and the Illinois Genetic Algorithms Laboratory

University of Illinois at Urbana-Champaign
117 Transportation Building
104 South Mathews Avenue
Urbana, IL 61801-2996

Fax: 217/244-5705
Email: jeffhorn@uiuc.edu
WWW: http://www.uiuc.edu/ph/www/illigal

ABSTRACT

An evolutionary classifier, such as a learning
classifier system (LCS) or a genetic programming
boolean concept learner, must maintain a popula-
tion of diverse rules that together solve a problem
(e.g., classify examples). To maintain “coopera-
tive diversity” while applying a selection operator
to the population of rules, as in the Michigan-style
LCS, the evolutionary algorithm must incorporate
some kind of niching mechanism. The natural
way to accomplish niching in an LCS is to force
competing rules to share resources (i.e., rewards).
The implicit or “natural” niching and speciation
induced by such resource sharing, is shown to be
robust in the face of severe selective pressure, low
population sizes, and overlapping rule coverage.
Specifically in this paper we analyze the two-niche
(two competing/cooperating rules) case. We find
closed form approximations for niche maintenance
and niche convergence times, giving us the begin-
nings of a first predictive model for interacting
(cooperating) rules in an evolving population. Fi-
nally, we make the case for niching/speciation as
a basic, indirect form of cooperation that is fun-
damental to, and underlying, all other types of
more direct cooperation, and which the LCS must
therefore promote. Although we focus on the LCS
as an example of a specific and well-known evo-
lutionary classifier, all of our results are general
enough to apply to any evolutionary algorithm,
such as genetic programming (GP), that applies
selection to a population of diverse classifiers.

1 Introduction

The unique power of the learning classifier system, or

L.CS (see (Holland, 1971, 1975, 1985, 1992; Booker, 1982;
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Goldberg, 1983, 1989a; Wilson, 1986; Wilson & Gold-
berg, 1989)), is its ability to discover, through artificial
genetic search, a group of cooperating rules that together
represent a concept, or implement a set of behaviors, that
solve the problem at hand. In the case of the so-called
Michigan-style LCS, which is the subject algorithm of
the following analysis, the search for cooperative rule
sets takes place within a single population of competing
and cooperating rules. Thus cooperation and competi-
tion occur simultaneously among different rules (individ-
uals) and sets of rules (subpopulations). This model of
intertwined, multi-level cooperative and competitive in-
teractions seems natural, based on real-world examples
of ecologies, economies, and societies. Yet its potential
power of expressing complex concepts and behaviors is
offset by the tremendous complexity of its population
dynamics.

Although the subject algorithm of our analysis is the
Michigan-style LCS, our results are generally applicable
to all types of evolutionary (i.e., selection-based) algo-
rithms which adapt a population of diverse classifiers
(e.g., rules). Because of our simplifying assumptions,
the analysis is not specific to any type of recombination,
mutation, or encoding. The classifiers in the population
can be string encoded rules (as in an LCS), decision trees
(as in GP), fuzzy logic rules, or neural networks. The
analysis here assumes only fitness proportionate repro-
duction, and a fitness assignment that is proportionate
to the reward (credit) for correct classifications.

In this paper we continue earlier work (Horn, Gold-
berg, & Deb, 1994) that attempts to lay a foundation for
a complete analytical model of cooperative-competitive
evolution by isolating what is arguably the lowest but
most fundamental type of cooperation: problem decom-
position via niching. That is, various rules, or species,
solve different parts of the problem, earning separate,
distinct rewards (i.e., niches). Rules that compete to



perform the same task (e.g., classify the same examples)
compete for the same rewards, while rules that do not
overlap in their tasks/rewards are cooperating, in an in-
direct manner. As we shall show, such indirect or im-
plicit cooperation is far from weak in its ability to survive
strong selective pressure for many generations.

In this paper we focus exclusively on one particular
method of niching: reward sharing. The implicit niching
induced by the natural and simple method of dividing
up reward/credit/fitness among all individuals who have
earned it, is a powerful promoter of cooperation. It is
capable of maintaining cooperative (i.e., non-competing)
rule sets even under constant and rigorous application of
genetic algorithm selection and search.

We first describe briefly the existing work on the use
and analysis of sharing in the LCS. We then proceed
to make a strong case for the critical need for sharing-
induced niching in the Michigan-style LCS. Finally, we
expand our understanding of the nature, capabilities,
and limitations of such niching-induced cooperation by
extending the results of Horn, Goldberg, and Deb (1994).
Specifically we perform a critical timing analysis of niche
convergence and maintenance. The ultimate goal of this
line of research is a complete predictive model of nich-
ing in evolutionary computation systems. The results to
date, and the expected model, are generally applicable to
all types of evolutionary computation where the goal is
successful search for emergent cooperation via selective
competition.

2 Background

In this section we briefly review the nature of niching,
the need for niching in an LCS, existing work on niched
GAs, and some previous work using niching in classifier
systems.

2.1 The Need for Niching in the LCS

In a simple GA (or GP) each individual is evaluated ac-
cording to a single scalar fitness function independent
of other members in the population. We can thus view
the task of the simple GA as optimization of the sum,
or average, of the population’s fitnesses. The optimum
population consists entirely of copies of the best individ-
ual. But when individuals influence each other’s fitness
evaluation, the task of the GA can no longer be mod-
eled as an optimization of total population fitness. Such
evolution has gone by the name of co-evolution, coad-
aptation, and context-dependent function optimization.
Co-evolution is more natural, more realistic, potentially
more powerful, and certainly more complex than the con-
vergence of a simple GA. In the LCS, we ask the GA to
search through the space of all possible rules to find and
maintain a diverse, cooperative subpopulation.

In the LCS community it is commonly believed that

the GA is used so sparingly, and with so many other
specialized operators at work, that it is virtually impos-
sible for a single rule to take over the population. And
this is often the case. Specialized selection operators
such as elitist selection, or protective group measures
such as the formation of classifier corporations, or any
kind of cooperative-reinforcement fitness function such
as the bucket brigade or epochal credit assignment, all
help counteract convergence. But this observation does
not help us understand or predict the behavior of the
LCS.

The LCS in its simplest form, arguably a stimulus-
response LCS for binary classification as we outline be-
low, should be able to maintain a diverse group of high-
quality rules that together classify the examples at hand.
Furthermore, if we try to maintain diversity by lowering
selection pressure, we deprive the LCS of the power of
GA search. Therefore, maintenance of rule sets must
take place over a time frame that is at least an order of
magnitude greater than the convergence time of the GA.
The only way to maintain such high-quality diversity in
the face of high selection pressure is to balance conver-
gence with a restorative force, such as “niching pressure”

(Horn, 1993).

2.2 Previous work

The important role of niching in evolutionary classifica-
tion systems has been recognized by many researchers.
Perhaps the earliest and most consistent advocate of the
critical role of some type of niching in an LCS was Booker
(1982, 1989). He implemented niching using an indirect
form of sharing based on partial match scores of individ-
uals with rewards, and introduced mating restrictions to
limit mixing between niches. Wilson also demonstrated
the ability of niching, via sharing of reward/credit, to
maintain diverse disjuncts in a population representing
a disjunctive boolean concept (Wilson, 1986) or a sur-
vival strategy (Wilson, 1987). In his more recent work
(Wilson, 1994, 1995), he simplifies the LCS algorithm
and isolates key dynamics, such as niching.

Smith and Valenzuela-Renddn (1989) identified the
general need for niching in the LCS, but rather than use
the implicit niching, via reward sharing, suggested by
Booker, Wilson, and others, they applied ezplicit nich-
ing, via fitness sharing, to a small LCS using Hamming
distance as a metric on the space of rules. They were suc-
cessful in maintaining a set of diverse rules that together
covered the examples and solved the problem. However,
they apparently ran into the separation problem inher-
ent in fitness sharing and identified in (Goldberg, Deb, &
Horn, 1993). Briefly, the separation of desirable and un-
desirable individuals can be a problem for fitness sharing
because of the fixed niche radius o,;. We conjecture that
implicit niching using reward sharing should avoid this
particular type of separation problem, but this remains



to be shown. Mahfoud (1995a, 1995b) has recently had
success also using explicit niching for GA-based classi-
fication of boolean concepts, although he does not call
his algorithm an LCS. There is some evidence in his re-
sults that the separation problem crops up, but again
this remains to be shown.

Perhaps the clearest demonstration of explicit niching
for GA-based disjunctive concept learning is by McCal-
lum and Spackman (1990). Their “sharing examples” (or
“splitting examples”) method is identical to the natural,
simple method of equaling sharing reward/credit that is
the subject of our analysis. They demonstrate stable
steady state populations under GA selection. Unfortu-
nately, Neri and Saitta (1995) appear to have misinter-
preted McCallum and Spackman’s description. Neri and
Saitta show that their interpretation of splitting exam-
ples does not arrive at a diverse steady state but rather
converges to a uniform population. However, Neri and
Saitta go on to show implicit niching, correctly inter-
preted from (Horn, Goldberg, & Deb, 1994) does main-
tain a stable, diverse steady-state population of concept
disjuncts. They go on to show how their universal suf-
frage niching method also maintains the desirable steady-
state distributed concept representation. Furthermore,
their analysis introduces some new techniques for mod-
eling niching.

Most recently, Smith, Forrest, and Perelson (1993)
analyzed implicit niching in the immune system model.
They noted that a similar niching process takes place in
the LCS. They went on to show that the immune sys-
tem model does indeed exhibit “emergent fitness shar-
ing” with many of the properties of GA explicit fitness
sharing. The immune system model is very similar to
the S-R LCS, with the exception that rules cannot use
“don’t care” wildcard symbols (i.e., “#”). Generaliza-
tion is induced by taking a limited size random sample
of rules (a.k.a. antibodies) to compete to cover an exam-
ple (antigen). Much of their analysis was thus focused
on the sampling process and its effects.

In this paper we avoid the issue of rule generality and
concentrate on the implicit niching induced by arbitrar-
ily breaking ties between rules competing for a resource.
This arbitrary tie-breaking is used in the immune system
model as well as the GA. It leads to an expected even
division of a resource among all individuals competing
for it, and is the key to sharing, implicit or explicit.

3 The Problem at Hand

In this section we describe the critical process of isolating
one LCS mechanism, implicit niching, and its effect on
LCS behavior. To do so, we idealize the LCS by eliminat-
ing or simplifying operators. At the same time, we must
simplify the corresponding classification task which the
resulting LCS, with its remaining idealized mechanisms,

should accomplish.

To understand the complex relationships that can
and do emerge among rules in the LCS, and among in-
dividuals in coadaptive systems in general, we believe
it is necessary to analyze each type of rule interaction
in isolation. Here we concentrate on the weak cooper-
ation induced by rule competition for limited resources
(i.e., finite rewards). The sub-goal of weak cooperation
is to cover (exploit) as much of the resources as pos-
sible. The only type of rule interaction is competition
for the same resource, and the natural mechanism for
handling such competition (and encouraging search for
uncovered resources) is sharing of contested resources.
Thus similar rules share common resources by dividing
them up among themselves. This simple method induces
niching or speciation, an emergent phenomenon that we
suggest is prerequisite to all other types of cooperation
(i.e., strong cooperation).

3.1 The Assumptions, in Brief

We begin our process of functional decomposition by
making the following assumptions about the LCS:

e Ternary alphabet
e Stimulus-response classifiers
e Binary classification

e Equal specificity of all rules

Our first simplification is a common one in LCS anal-
ysis as well as LCS applications: we use a ternary alpha-
bet. The classifier conditions are coded from the set
{0, 1#}, where # is the “don’t care”, or wildcard, char-
acter. Responses are limited to the alphabet {0,1}. We
assume k attributes to describe the environmental input.
Each attribute is encoded by ¢; bits, z € 1..k. So our
environmental input vectors will have £ = Eleﬁi bits
total. We can concatenate all our attributes into a single
bit string representing an individual example (or more
generally, an environmental input vector). Equivalently,
we can imagine that we have ¢ binary attributes in our
problem. Thus each rule’s condition is a string of length
£ taken from {0, 1, #} (e.g., ##F00410114#0411).

Our second simplification is also a common one in
LCS analysis: we limit ourselves to a stimulus-response
(S-R) classifier system. In a S-R LCS there is no internal
message list and hence no passing of messages between
classifiers. The output of each classifier is a single re-
sponse to a single input from the environment. With no
message list, the LCS cannot evolve “strong” coopera-
tion. That is, rules cannot communicate directly with
each other, nor can they pay or charge each other credit.
We thus avoid the question of delayed reward, eliminat-
ing the need for complex credit assignment mechanisms,



such as the bucket-brigade algorithm. What we are left
with is weak cooperation, in which rules cooperate indi-
rectly to cover the different reward situations (e.g., cor-
rect classifications of examples).

We further restrict our classification task to binary
classification (i.e., single class membership). The goal of
the LCS is to learn to classify instances as either mem-
bers of a class (or concept) or not members. The out-
put of each classifier is either a “1” (member of class)
or a “0” (not a member). If we also assume a default
rule (##+#...4#£ = 0), then the task of the LCS is to
find accurate rules that classify the exceptions (i.e., the
positive examples). Therefore, we can assume that all
rules besides the default have an output of “1”. We can
then leave the response (output) out of the encoding, and
search only among the possible condition vectors (e.g.,
LI0F#F#0F# 04 #4£101¢).

Finally, we make a very important simplification to
eliminate the issue of specificity versus generality. We
assume that all rules in the population have the same
number of “don’t care” characters #. With each rule
applying to an equal volume of the total classification
space', there can be no preference for specific or gen-
eral rules. All reasonable fitness functions for individual
rules reduce to a function of accuracy only. And since
all rules have equal volumes of coverage (applicability),
any reasonable fitness function based on accuracy must
be a monotonically increasing function of the number of
examples covered by the rule. So we can simply use the
number of examples covered (again, assuming all exam-
ples are positive ones) to order the rules according to
fitness, even though we don’t know the exact, possibly
nonlinear, fitness function.

3.2 What’s Left? A Hard Problem: Cov-
ering

After all the above simplifications and assumptions, it
is essential that we verify that we have still have a dif-
ficult, interesting, albeit abstract, problem. When we
limit ourselves to binary classification and assume a de-
fault class (i.e., we are really only trying to identify one
class), we are left with an instance of the set covering
problem. We are trying to cover the positive examples
with a small set of accurate rules. Figure 1 illustrates our
version of set covering. The large rectangle represents all
possible 2¢ instances, where £ is the number of bits used
to encode each instance. In Figure 1, we use £ = 10 bits.
The entire instance space is thus described by the rule
(#H#H#H#H A AA#H# = 1) or simply FFtF###H#H A4
The actual concept to be learned is shown by the shaded
regions. The LCS is given only a subset of these instances
as (positive) examples. The LCS is constrained to a rules

1 The entire classification space is of size 2¢, and is represented

by #4... 7.
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Figure 1: Binary classification as a covering problem. The
task of the LCS is to find classifiers (rules, represented as
circles) to cover the examples (positive only) of the unknown
concept (single class, represented as shaded regions).

+ "4  =Positive Examples

syntax of {0,1,#}1% We represent this constraint by a
circle for the “coverage” of a rule. Rules with more #
characters cover more of the instance space, and are rep-
resented by larger diameter circles. As Figure 1 shows,
rules can vary in specificity (coverage of instance space)
as well as in number of examples? covered. Furthermore,
rules can overlap to almost any degree in coverage of in-
stances and/or examples.

In general, the binary classification task of the LCS
is to find a small subset of accurate rules that cover the
examples. These are three separate objectives. However,
the second objective, individual rule accuracy, is prob-
lematic. How, exactly, do we measure accuracy? Clearly
accuracy increases with the number of examples correctly
classified and decreases with the number classified incor-
rectly. But these two numbers represent two conflicting
objectives themselves. One rule might have both a higher
number of correct classifications and a higher number of
incorrect classifications than another rule. Which is pre-
ferred? In addition, we often want rules with greater pre-
dictive power, that is, more generality because of their
greater coverage of instance space. We might prefer less
accurate but more general rules to more accurate, more
specific rules. So the objective of rule accuracy is itself

2For the rest of this paper we omit the word “positive”, and
assume all examples are positive ones.



fag = Area(A[ ] B)

Positive Examples

Figure 2: By assuming rules of equal specificity (number of
#’s), we can use diameter in the space of examples to indicate
a rule’s accuracy as “coverage of examples”. We can then
visualize our definitions for the objective fitness of rules, fa
and fg, and the “fitness” of the overlap in rule coverage, fap
as areas. (Fitness might be measured as number of examples

covered.)

multiobjective. It is tied up in the issues of generality-
specificity versus accuracy. These are critical issues, but
we believe they are separable from the issues of rule set
size (conciseness of concept description) and coverage.
To avoid considerations of generality versus speci-
ficity, and hence reduce accuracy to a single objective
that can be measured by a scalar, we consider only rules
of the same order (number of don’t cares). All such rules
have the same specificity. Since each rule has the same
coverage of instance space, their accuracies can be com-
puted as simply the number of examples covered. Maxi-
mizing the number of examples covered maximizes accu-
racy. In terms of Figure 1, the LCS is further constrained
to using circles of a specific, constant size. This observa-
tion prompts us to redefine our Venn diagram terms and
use the diameter of the circles to represent accuracy. In
Figure 2, the large rectangle represents the space of all
examples given to the LCS for learning. The size of a
circle represents the number of examples covered by the
corresponding rule, and hence its accuracy. The overlaps
of circles represent overlaps of coverage among rules, and
thus contain the examples “shared” by two or more rules.

3.3 Definitions

Let f4 and fp be the objective fitnesses for rules A
and B respectively. The objective fitness could be taken
as the number of examples covered by that rule, in the
case of binary classification. Let fip be the amount of
resources in the overlapping coverage of rules A and B.
That is, fap is the amount of resources shared by A
and B (e.g., the number of examples cj?vered by both).

— A

We also define the fitness ratio ry = T and the ratio

of overlap r, = f}:‘—AB Figure 2 illustrates some of these
definitions. Note that 0 < r, < 1/r;. (For example, if
both rules cover the same number of examples, f4 = fB
and therefore r; = 1. Then the ratio r, can vary between
0 and 1, as we increase the overlap in coverage.)

Let n4, np be the number of copies of rules A and B,
respectively, in our population. Then we can calculate
the shared (expected) fitness of rule A:

Fonn = fa— faB n faB ‘ (1)
nA nag+np

Similarly for rule B,
B — faB n faB

np ng+np

(2)

fsh,B =

4 Time Scale Analysis of Niching

In this section we look for two bounds on the expected
times of niche maintenance for the two niche case. Specif-
ically, we first determine the expected steady-state equi-
librium point (population distribution) for two distinct,
but possibly overlapping niches (rules) A and B. We
then seek the expected time until niche extinction: the
time until one or the other species is eliminated from the
population (and hence cannot return). We then attempt
to determine the niche convergence time: the expected
number of generations to reach steady-state. When these
two time bounds are close, we can expect poor niche
maintenance. When they are far apart, we should ex-
pect long-term, steady-state niche maintenance. Under
what conditions of niche overlap, fitness ratio, and pop-
ulation size can we expect to find the phase transition
from poor to good niche maintenance?

4.1 Steady-states and equilibrium points

For niched GAs that use any kind of resource sharing,
equilibrium (under selection only) will occur when the
shared fitnesses of all population members are equal (Gold-
berg & Richardson, 1987; Deb, 1989). In the two niche

case, the general equilibrium condition is:

fsh,a = fsh,B- (3)

Substituting the formulae for shared fitness in an LCS,
Equations 1 and 2,

fA—fAB+ faB :fB—fAB+ faB

(4)

na na+npg ng na+ng
Solving for 7=,
b b
ng _ fe—fap T2 Fa 5
na - faB ° ( )
na fA_fAB 1_.f_A



Substituting our ratios ry and r,, rearranging, and nam-
ing the result reqn = 22 (at equilibrium),

1

s
1—r,

To

Feqn = (6)
We see that the equilibrium point changes with overlap.
With no overlap, that is when r, = 0, then 7.y, = 1/7;.
While at complete overlap (r, = 1/r) the equilibrium
point is 0 (i.e., the population will converge to a uniform
one, consisting of all As).

Finally, let us extract from the equation for r., , the
actual proportion of A’s in the population, P4 = ns /N,
which we will need later in the paper:

1
1— Py ;—To

np N—nA

r = — = = .
een nA n4g PA 1—7“0

Solving for P4 and calling it P4 4

1—7r,

T 1 (7)
1-— 27”0 + ?

Paeq =

We note that in general Pa # pa; that is, the probabil-
ity pa of choosing A from the current population using
fitness proportionate selection is mot the same as the
proportion P4 of A in the current population. However,
at equilibrium (i.e., any steady-state, such as uniform
populations) this IS true (i.e., pa = Pa).

4.2 Rule maintenance times

In (Horn, Goldberg, & Deb, 1994), the expected time to
loss of one of the two niches (i.e., classes of individuals)
was calculated exactly by a Markov chain analysis, just
as Horn (1993) calculated for fitness sharing in a niched
simple GA . This quantity is simply the expected time to
absorption by either of the two “converged” states (i.e.,
uniform populations of one or the other class of individ-
ual). In this subsection we review their exact results from
Markov chain models, and then propose an approximate
closed form expression.

4.2.1 FEzxact Model

Calculating the exact expected absorption time for an
absorbing Markov chain is straightforward, although com
putationally expensive for large matrices (i.e., large pop-
ulation size N and/or many different niches). A random
initial population, which has little chance of being in ei-
ther absorbing state, is assumed. Horn, et. al. (1994)
found that the expected absorption time grows expo-
nentially with population size N. The exponent in the
growth decreases as r; moves away from one, just as in
the case of the niched GA (Horn, 1993). Finally, holding
r; constant, they found that the exponent of growth (in

N) also decreases with increasing niche overlap, just as
in the niched GA (Horn, 1993)3.

The time to absorption (4s5) is also called niche (or
rule) maintenance time or niche eztinction, failure or loss
time (e.g., Mahfoud, 1995a, 1995b). Here we look at
how t,4ps varies with overlap. That is, we vary 0 < r, <
1/r; while holding r; constant. In Figure 3 we show the
growth in expected absorption time as a function of N
for r, = 0.0, r, = 0.1, r, = 0.3, and r, = 0.5, while
r; = 2 (the solid dots represent the output of the exact
(Markov) models).

This growth (Figure 3) appears to be exponential.
Indeed, for the case of “perfect sharing” (Horn, 1993),
when 7, = 0, we can find the exact exponent.

Let pa be the probability of selecting a single indi-
vidual copy of rule A for reproduction from a particular
population with n4 copies of rule A and np copies of

rule B (with n4 +np = N). Under proportionate selec-
nafsh,a
nafsh,atnsfsn,B’

the shared fitnesses of rules A and B respectively, in the
current population. Substituting in the shared fitnesses
fsh,a and fsp g from Equations 1 and 2, and rearranging,
yields

tion, py = where f;p 4 and f;, p are

_ Ja— fap+ faB§
fa—TaB+ fap5¢+ B — fap + fa%E

(8)

ba

Dividing numerator and denominator by fa, the above
becomes

I

A A
_ fap 4 faBna | fB _ faB | faBng’
1 A+ AN+fA A+fAN

(9)

pa =

[y

Remembering our defined ratios 7y = fa/fp for fitness,
and 7, = fap/fa for overlap, we find that

L+ (3¢ = 1)
pA = na Nl ng* (10)
L=rotr'g+ 7 —1o+7 %

Finally, simplification yields

n
1_r0+roTA

1_7"0‘}‘#

(11)

pa =

With no overlap (r, = 0), the probability of choosing
A is constant: py = ﬁ = r;il' Therefore in the
Markov chain model for no overlap, the transition prob-
abilities for all transient states are identical. It follows
that prior to absorption we always have the same prob-
ability of absorption, namely papsors = (pa)™ + (ps)",
where (pa)” is simply the probability of choosing N As
given that p4 is the probability of choosing a single copy
of A (under proportionate selection). With no overlap,

3Note that the case of no overlap (r, = 0) in implicit niching
is exactly the same as for the niched GA with no overlap (i.e.,
“perfect sharing” (Horn, 1993)).



(pa)V = (r,fil)N- Similarly, (pg)N = (TJ}H)N, when
r, = 0. The expected time to absorption, assuming that
the chain is started in a transient state, is the inverse of

the probability of absorption, 1

(PA)N-}-(PB)N:
Eltaps] ! (12)

abs] = 1 T .

N + )™

After some rearranging:

(ry + DY .
Eltaps] = ———. 13
[ b] T}V—i-l ( )

The expected absorption time above grows exponentially
in N for any r; > 0. In particular, when r; = 1, the
growth is O(2V).

When r, # 0 (i.e., niche overlap), it might be im-
possible to calculate a closed form expression for the ex-
act expected absorption time. However, in Figure 3 it
certainly appears that all such growth is exponential, at
least up until 7, = 1/r¢, at which time the growth should
become logarithmic (linear) in N, since this is the case
of selection (drift)*.

4.2.2  Closed Form Approzimation

A closed form expression for E[tqps] with overlap (r, > 0)
is desirable for our timing analysis however, and we de-
fine an approximate one here. We use the approach
above (for 7, = 0) by simply assuming that the popula-
tion is always at the equilibrium point until the actual
absorption event. That is, we assume only three possible
states: equilibrium, and the two absorbing states (uni-
form populations). We do not try to justify this assump-
tion here, nor do we try to bound the error, leaving this
to future work. Rather, we merely observe that under
the assumptions of very stable steady states (e.g., large
populations, low-variance selection), our approximation
might be justified.

Justification aside, we go ahead and plug into the
general equation

1 1

Eltays] = (PA)N + (PB)N - (pA)N + (1 _pA)N’

where p4 and pp are the probabilities of selecting A and
B respectively, from the current population under pro-
portionate selection. The above is simply the expected
waiting time until selection chooses IV copies of A or NV
copies of B. Our assumption above translates here into
the assumption that p4 is constant, at or near equilib-

41t has been suggested (Horn, 1993) that exponential growth in
niche maintenance time, as N grows, is entailed by any restorative
pressure, and thus could be used as an indicator of a “true nicher”.
If that is the case, then LCS implicit niching clearly qualifies.
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Figure 3: A comparison of ezact expected niche loss times to
the approximated times, as a function of population size. The
exact results (from the Markov models) are shown as solid
dots. The approximations, from our closed form expressed
model, are shown as dashed lines. The plots indicate general
agreement for small niche overlap (r,). For all plots shown
ry=2.

rium, so that we can just substitute py ., from Equa-
tion 7 above:

E[tabs] ==

( 1—r, (14)

1—r, )
1—2r0+#)N + (1 - 17T)N

—2rot5-
which does not simplify much.

To test our closed form approximation, we plot both
the exact results (from the Markov chain model) and
the approximations in Figure 3. In Figure 3, the solid
dots are the plotted points for the exact (Markov) model,
while the dashed lines are defined by Equation 14. In
general, we see close agreement over the range plotted,
except for high overlap (e.g., complete overlap when r, =
1/r; = 0.5). As expected, our simple closed form expres-
sion modeling absorption time loses accuracy as for high
overlap cases. Intuitively, with high overlap the vari-
ance of the steady-state distribution will be high, and
the population will not spend as much near the steady-
state. Since the GA is spending less time at steady-state,
the use of the steady-state absorption probability as an
estimate of the overall absorption probability introduces
increasing error, as overlap increases.

4.3 Steady-state Convergence Times

Having found an upper bound on expected lifetimes of
niches (rules), and convinced ourselves that steady-state
populations of rules can be maintained, we now turn to
the question of how such steady-states are reached. Un-
der normal selection (e.g., in a simple GA) it has been
shown that convergence to the “equilibrium point” of a
uniform population takes place very quickly. In the case
of selective preference (i.e., ry # 1) the convergence time
grows logarithmically in population size N, while un-
der genetic drift (i.e., 7y = 0), the expected convergence



time grows linearly in N. Can we expect similarly quick
convergence to “niching equilibrium”?

To answer such questions, we use the simple, well-
known method of expected proportion equations to model
niche convergence. This method of tracking only the
expected next generation population, rather than track-
ing the entire distribution over all possible populations,
has been put to good use many times in the GA litera-
ture (e.g., Smith & Valenzuela-Rendén, 1989; Goldberg
& Deb, 1991; Neri & Saitta, 1995). The methodology
has acquired several names. Vose (1993), noting that
the accuracy of the proportion equations asymptotically
approaches one with increasing population size, calls it
the infinite population model. Recently, Neri and Saitta
(1995) coined the term wvirtual average population. For
an in-depth consideration of the accuracy of these models
for finite populations, see Ben Goertzel’s book (Goertzel,
1993), in which he calls the trace given by the recurrent
proportion equations the local expected path, as opposed
to the “global” (exact) expected path given by the full
Markov model.

4.3.1 Niching Convergence Behavior

Under proportionate selection, the expected proportion
of the next generation’s population given to an individ-
ual is equal to the probability of selecting that individ-
ual for reproduction in the current generation’s popula-
tion. Thus if P4 is the proportion of the current pop-
ulation, at time ¢, consisting of copies of rule A, then
E[P4+41] = pa, where py4 is calculated at time (gener-
ation) ¢. Substituting for p4 from Equation 11 above,
and noting that P, ; = ”WA at time ¢, we find that

1_r0+ronTA - 1_ro+roPA,t

E[P =
[AJ+1] 1—7“0—}-% 1—7”0+%
Rearranging, we find that
1—r, ro
E[P = Py .
[ A,t—l—l] 1_r0+% 1—7"0—1—% At

Now if we make the major assumption that E[P4 ;11] &
Paiy1 (which is a strict equality only for determinis-
tic selection operators or for infinite populations (Vose,
1993)) then the above is a simple linear recurrence rela-
tion on P4 ;. Defining P40 to be the initial population,
we solve the difference equation and rearrange to get:

1—r,
P -
At 1—2r,+ L

¢
1—r, Ty
Paon— . (15

_|_

Remembering that at equilibrium (steady-state) P4 o, =

1-r,

o™ (Equation 7), and introducing 8 =
ot

To
1 9
et

we simplify to
Pat = Paeg— (Paeq— Pao)B

or

PA,t = PA,eq(l_ﬂt) +PA,0ﬂt' (16)

We note that @ < 1. This must be so as the numerator
of 3, r, = f}f—AB must always be < 1, while the denomi-
nator must always be > 1, since fap < fp = fJf—AB <
;—’j = 1, < %, and so 1 < #—ro—l—l. In general,
B < 1 and Equation 16 illustrates the exponential decay
of the initial state’s effect on the current population, and
the corresponding exponential growth of the “long term”
steady state’s influence.

The thick line plotted in Figure 4 illustrates a typical
convergence graph. With fitness ratio r; = 2 and over-
lap ratio 7, = 1/3, the equilibrium proportion P4 ., =

1—7r, _ _ .
m = 4/5 = 0.8. In Figure 4 we see very fast

convergence to this equilibrium.

To see the effect of varying the degree of overlap,
Figure 4 shows convergence curves for a number of dif-
ferent r, values. The lowest curve corresponds to r, =
1/10, very little overlap, in which we expect to see al-
most instantaneous (i.e., one generation) convergence to
steady-state (Pa,cq). The other curves show how in-
creasing overlap increases the convergence time but also
changes the equilibrium point. At maximum overlap,
ro = 1/ry = 1/2, we see convergence to a population of
all As.

In the degenerate case of f4 = fp = fap, the two
species/rules A and B are identical, completely overlap-
ping, and Equation 16 reduces to a constant, P4 o, indi-
cating no selective pressure away from the initial popu-
lation distribution. This is the case of genetic drift, in
which equations of expectation (e.g., Equation 16) are
least useful, failing to describe the variance of the selec-
tion operator. In the case of genetic drift, this variance
dominates the dynamics, and leads to eventual loss of
one or the other species.

4.3.2  Convergence Times

Here we derive a useful expression for (two-)niche con-
vergence times by solving Equation 16 for time ¢ (in gen-
erations). Rearranging Equation 16, we move ¢ to one
side:

t PA,t_PA,eq

PA,O - PA,eq

Taking the logarithm of both sides and solving for ¢,
yields:

Py eq—P.
_ Log[ﬁ] (17)

Log[f]

In general P4 ; approaches P4 ., asymptotically with ¢.
More practically, we introduce the discrete nature of a
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Figure 4: Expected convergence with varying overlap: r, =

1/10, ro = 1/3, and r, = 1/2 (complete overlap). Fitness
(ry = 2) is the same for all plots.
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Figure 5: Expected niche convergence time grows logarith-
mically in population size.

finite population of size N, by asking for the time it takes
to go from one copy of A (P4 = 1/N) to within at
most one individual (1/N) of the equilibrium population
(Pa,t = Pa,eq — 1/N):
N
_ LOg[PA,elq/—llN]
Log[p3]
Simplifying yields:
_ —Log[Pa,eqN — 1]
Log[p3]

We can see immediately that expected convergence time
grows logarithmically in population size N, as we sus-
pected. Figure 5 illustrates a typical expected growth in
convergence time with increasing N. Here r; = 2 and
r, = 1/3 (remember that /3 is a function of r; and r,).

(18)

4.4 Putting It All Together: Critical Pop-
ulation Sizes

In this subsection we make an initial attempt to bring
the above two timing results together in a rather crude
fashion. We hope to refine and make rigorous some nich-
ing control maps in future.

Convergence vs. Extinction Tines
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Figure 6: Expected niche extinction times (upper curve) ver-
sus “expected” niche convergence times (lower curve). Fit-
ness ratio ry = 2 with very high overlap r, = 0.45 (near
maximum).

In Figure 6 we illustrate a simple way of using these
two results together. The upper curve plots the expected
niche extinction times (using the approximations) as a
function of population size. The lower curve is the ex-
pected niche convergence time. Here again the fitness
ratio ry = 2, but now the overlap ratio is relatively high,
ro = 0.45. This overlap means that r; * r, = 90%
of B’s covered examples are also covered by A. This
relatively high ratio of overlap was chosen to illustrate
clearly the predicted niching failure at low population
sizes (e.g., N < 20). At high enough population sizes
(e.g., 30 < N), the difference between the niche conver-
gence and niche extinction times is quite high.

Characterizing the critical phase transition from poor
niche maintenance to robust niche maintenance as pop-
ulation size increases, is tricky. The niche convergence
model (lower curve) breaks down for small population
sizes, while the niche extinction time approximation (up-
per curve) loses accuracy with increasing overlap. Yet
our initial models above give us clear indication that im-
plicit niching, in a learning classifier system or in any GA
or GP with distinct and finite resources/rewards, works
well within bounds. And apparently we have some hope
of defining those boundaries.

5 Limitations

Before discussing the implications of the above results,
we address the limitations on our analysis imposed by our
simplifications and assumptions described in Section 3.1.
Again, briefly, those assumptions are (1) a ternary alpha-
bet {0, 1, #}, (2) stimulus-response (S-R) classifiers, (3)
binary classification task, and (4) equal specificity of all
rules.

Ternary alphabets are common in both practical and
theoretical LCS work, and are equal in expressive power
to higher cardinality alphabets. So the assumption of a
ternary alphabet is not a simplification and hence does



not limit the applicability of our results.

The restriction to S-R classifiers is a real simplifica-
tion, however, and does place some limits on the exten-
sion of our results. Still, the S-R LCS is quite powerful
(Wilson, 1994). We could argue that before adding the
complexities of message-passing, we should first under-
stand and master the power of the S-R LCS. We could
also look at the additional rule interactions possible with
message-passing in terms of their effects on the steady-
states of the S-R LCS, thus extending our results to in-
clude non-S-R classifiers and strong cooperation.

Our assumption of binary classification is a simplifi-
cation that allowed us to graphically depict rule cover-
age and overlap, but which actually has no effect on the
mathematical analysis in this paper. The concepts of
rule coverage and overlap are just as valid in the case of
k-ary classification, but they can no longer be measured
and ordered simply by numbers of examples.

The fourth assumption is the only one that places
any significant limitations on the applicability of our an-
alytical results. Specifically, LCS implicit fitness sharing
describes the effects of rules on the “coverage” compo-
nent of each other’s fitness function (where coverage is
based on the number of correct classifications). Rules
of the same order of specificity can vary only in this
component, and so implicit fitness sharing captures the
entirety of rule interaction within a single level of gen-
erality. Rules of different orders, however, can vary in a
second component of fitness: accuracy (which is based
on the number of errors). But coverage and accuracy
are conflicting objectives, with no general way to com-
bine them into a single scalar fitness measure. So the
extension of our results to include rules of all orders of
specificity will depend on the user-specified combination
of the two fitness components. However, the effect of a
more general rule on a more specific rule, with overlap-
ping coverage, will probably be some kind of sharing of
the overlapped resources.

6 Conclusions

The specific focus of this paper was on niching in the
LCS. But the results are generally applicable to any evo-
lutionary algorithm maintaining useful diversity under

selective pressure on a task with separate rewards/resources.

It has long been known that some kind of natural and
implicit speciation takes place in the LCS if we break tied
competitions for resources arbitrarily. In (Horn, Gold-
berg, & Deb, 1994), our goal was to demonstrate a mean-
ingful LCS dynamic equilibrium point. By meaningful we
mean one that will be reached quickly (i.e., fast conver-
gence rate and high restorative pressure), and last long
(i.e., long niche extinction times). In 1994, we showed
the ability of the LCS to balance selection pressure with
restorative force, and thus maintain high quality, diverse

niches virtually indefinitely. This balance in turn allows
us to apply the GA more vigorously in the LCS. We can
then hope to improve LCS rule discovery. But for suc-
cessful exploration and exploitation of niches, the LCS
must have a large enough population to maintain sub-
populations at all desirable niches.

In this study we extended our model of implicit nich-
ing by finding a closed form approzimation for expected
absorption times in the Markov chain models, and also
by deriving a closed form estimation of niching conver-
gence rates using the expected proportion models. We
now have upper and lower bounds, however crude, on
expected “niche existence” times, as functions of popula-
tion size, fitness, and niche overlap. These are descriptive
models for the moment, but by carefully adjusting popu-
lation size, scaling fitness, and by introducing a tunable
parameter for tolerating niche overlap, we can eventually
use the models to prescribe proper parameter settings
to maintain exactly the cooperative population distribu-
tions we desire. That is, we should be able to control
selection’s distinction between cooperation and compe-
tition, and the inherent tradeoffs of accuracy (objective
fitness) versus generality versus coverage (overlap), etc.

We hope we have demonstrated that niching in an
LCS is absolutely necessary to any kind of cooperation.
By definition a cooperative group of rules is a set of di-
verse rules, and without some kind of niching the GA in
the LCS will not maintain diversity. If we want serious
GA search in our LCS, we must have significant selec-
tion pressure. If we want to maintain cooperative rules,
we must balance that selection pressure with a restora-
tive pressure. If we can’t do that, we won’t be able to
induce any type of strong cooperation, such as that nec-
essary for temporal rule chains and default hierarchies.
All such strong cooperation implies successful weak co-
operation (i.e., covering). Because of such entailment,
niching is fundamental to the success of rule search and
maintenance in the LCS, and perhaps to any cooperative
evolutionary algorithm.

The most important point of this paper, however,
is the demonstration that the dynamics of an interact-
ing, coevolving, cooperative/competive population can
be analyzed, described, predicted, and controlled.
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