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Abstract

XCS is a classi�er system recently introduced by Wilson that dif-
fers from Holland's framework in that classi�er �tness is based on
the accuracy of the prediction instead of the prediction itself. Ac-
cording to the original proposal, XCS has no internal message list
as traditional classi�er systems does; hence XCS learns only reactive
input/output mappings that are optimal in Markovian environments.
When the environment is partially observable, i.e. non-Markovian,
XCS evolves suboptimal solutions; in order to evolve an optimal
policy in such environments the system needs some sort of internal
memory mechanism.
In this paper, we add internal memory mechanism to the XCS

classi�er system. We then test XCS with internal memory, named
XCSM, in non-Markovian environments of increasing di�culty. Ex-
perimental results, we present, show that XCSM is able to evolve
optimal solutions in simple environments, while in more complex
problems the system needs special operators or special exploration
strategies. We show also that the performance of XCSM is very
stable with respect to the size of the internal memory involved in
learning. Accordingly, when complex non-Markovian environments
are faced XCSM performance results to be more stable when more
bits than necessary are employed. Finally, we extend some of the res-
ults presented in the literature for classi�er system in non-Markovian
problems, applying XCSM to environments which require the agent
to perform sequences of actions in the internal memory. The results
presented suggest that the exploration strategies currently employed
in the study of XCS are too simple to be employed with XCSM; ac-
cordingly, other exploration strategies should be investigated in order
to develop better classi�er systems





1 Introduction

XCS is a classi�er system proposed by Wilson [14] that di�ers from Holland's framework [2] in

that (i) classi�er �tness is based on the accuracy of the prediction instead of the prediction itself

and (ii) XCS has a very basic architecture with respect to the traditional framework. Introducing

(i) XCS develops a strong tendency to evolve near-minimal populations of accurate and maximally

general classi�ers; while (ii) permits a better insight of the learning mechanismwhich underlies the

classi�er system. Several common features of Holland's classi�ers have in fact been removed in

XCS, in order to simplify the study of the mechanism of learning. This has led to some interesting

results: [14], see also [13], presents an analysis of the similarities between XCS and the Q-learning

technique [10], while in [15] experimental results are presented showing that XCS can learn a more

compact representation than that learned by tabular Q-learning.

According to the original proposal, XCS does not include an internal message list, as Holland's

classi�er system does, and no other memory mechanism either. XCS can thus learn optimal policy

in Markovian environments where, in every situation, the optimal action is always determined

solely by the state of current sensory inputs. But in many applications, the agent has only partial

information about the current state of the environment, so that it does not know the state of the

whole world from the state of the sensory input alone. The agent is then said to su�er from the

hidden state problem or from the perceptual aliasing problem, while the environment is said to be

partially observable with respect to the agent [3]. Since optimal actions cannot be determined

only looking at the current inputs, the agent needs some sort of memory of past states in order

to develop an optimal policy. Such environments are non-Markovian, also Class 2 environments

according to [12], and form the most general class of environments. When in Class 2 environments

XCS can only develop a suboptimal policy, in order to learn an optimal policy in such domains,

XCS would require a sort of memory mechanism or local storage.

An extension to XCS was proposed [14] by which an internal state could be added to XCS like

a sort of \system's internal memory". The proposal consists of (i) adding to XCS an internal

memory register, and (ii) extending classi�ers with an internal condition and an internal action,

employed to sense and act on the internal register. The same extension was proposed [13] for ZCS

the \zeroth level" classi�er system from which XCS was derived; the proposal was validated for

ZCS in [1, 9] where experimental results were presented which showed that (i) ZCS with internal

memory can solve problems in non-Markovian environments when the size of internal state is
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limited [1]; while (ii) when size internal memory grows the learning become unstable [9].

Wilson's proposal has never been implemented for XCS and in the literature no results have been

presented for extending XCS with other memory mechanisms. In this paper we validate Wilson's

proposal for adding internal state to XCS. Experimental results we report, show that XCS with

internal state, we call it XCSM, evolves optimal solutions in non-Markovian environments when a

su�cient number of bits of internal memory is employed; while the system still converges to an

optimal policy in a stable way when a larger internal memory is employed. We then extend the

study of XCSM applying the system to Maze7, an environment which requires sequential use of the

internal memory, in order to evolve an optimal solution. The results we present show that XCSM

cannot solve Maze7 when it works using exploration, while a suboptimal solution is easily evolved

when XCSM works using only exploitation. Unfortunately, a classi�er system which only works

in exploitation is unacceptable since it eliminates all the search and generalization capabilities of

XCS. Hence, we analyze the experiments in Maze7 in order to understand why XCSM is not able

to evolve an optimal solution when the system works in exploration. Our analysis suggests that the

exploration strategies employed with XCS are too simple in order to guarantee the convergence

to an optimal solution when internal memory is employed. Accordingly, we believe that other

exploration strategies should be investigated in order to obtain better convergence in problems that

involve environments that are partially observable. The paper is organized as follows. Section 2

discuss the hidden state problem and introduce the two principal classi�cation for environments

presented in the literature. Section 3 presents an overview of XCS, while Section 4 introduces

the \woods" environments and the design of experiments. Section 5 discusses the performance

of XCS in non-Markovian environments. Wilson's proposal and our implementation of XCS with

internal state, we call it XCSM, is presented in Section 6. In Section 7, XCSM is applied to two

non-Markovian environments, Woods101 and Woods102. The stability of learning of XCSM is then

discussed in Section 8, while in Section 9 the previous results are extended applying XCSM to

Maze7 a more di�cult environment in which the optimal policy requires the agent to perform a

sequence of actions on the internal memory. Conclusions and directions for future works end the

paper.
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2 Environments and Agents

The learning capabilities of adaptive agents are related to their environment, a successful agent

in fact depends upon the regularities in its environment. Recently, many authors have addressed

the problem of studying the interaction agent/environment rather than studying a speci�c agent

and/or a particular environment separately. In the literature, there have been proposed some

classi�cations for the possible interactions between an agent and its environment.

Wilson in [12] proposes a scheme to classify reinforcement learning environments with respect

to the sensory capabilities of the agent. An environment belongs to Class 0 and Class 1 if the agent

can determine the state of the environment completely that is, the sensory capabilities of the agent

are su�cient to determine the entire state of the environment. When in Class 2 environments, the

agent has only partial information about the state of the environment that is, the sensors of the

agent are not adequate to determine the state of the environment completely. Class 2 environments

are said to be partially observable with respect to the agent, or equivalently are non-Markovian

with respect to agent's actions. Accordingly, the agent is said to su�er from the hidden state

problem.

Littman in [7] presents a more formal classi�cation of reinforcement learning environments, that

is based on the simplest agent that can achieve optimal performance. Two parameters h and

� characterize the complexity of an agent. An (h,�)-environment is best solved by an (h; �)-

agent that uses the input information provided by the environment and at most h bits of local

storage to choose the action which maximize the next � reinforcements. Previous classi�cation

can be easily mapped in this classi�cation: Class 0 and Class 1 environments correspond to

(h = 0; � = 1) and (h = 0; � > 1) environments, while Class 2 environments corresponds to

(h > 0; � > 1) environments. In this paper we focus on non-Markovian environments, i.e. Class 2

or (h > 0; � > 1) environments, for which the agent needs a sort of memory mechanism to evolve

an optimal solution. In the following, we present an example of Class 2 environment, while we

address the interested reader to [8] for more examples.

One of the most popular Class 2 environments that has been proposed in the literature is

Woods101 [1] shown in Figure 1, that is also known as McCallum's Maze [8]. An agent must learn

how to reach food, F symbol; it sense the environment by means of eight sensors that tells him

the content of the corresponding adjacent cells: food, obstacle or empty if the cell is free. The two

cells, evidenced by by the two arrows, are identical from the agent point of view since they return
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Figure 1: The Woods101 environment. Aliasing positions are indicated by the arrows.

the same sensory con�guration, shown at the top of the �gure. An optimal solution for Woods101

requires two distinct actions for each cell: the right cell requires a go south-west movement, the

left cell requires a go south-east movement. The agent when in these cells, cannot choose the

optimal action only examining the current sensory inputs, but it needs to remember at least the

previous state examined. Optimal policy can thus be obtained with one bit of internal memory

that represents previous agent position: when the agent reaches the aliasing position from the left

part of the maze, sets the internal register to 0, when it arrives from the right, the agent sets

the internal register to 1. Accordingly, when in the aliasing state, the agent chooses the action

go south-east or go south west if the register contains 0 or 1 respectively. Following Littman's

classi�cation Woods101 is thus a (h = 1; � > 1)-environment.

3 The XCS Classi�er System

We now give a brief review of XCS in its most recent version [15]. We refer the interested reader

to [14] for the original XCS description or to Kovacs's report [4] for a more detailed discussion for

implementors.

Classi�ers in XCS have three main parameters: the prediction pj , the prediction error "j and

the �tness Fj. Prediction pj gives an estimate of what is the reward that the classi�er is expected

to gain. Prediction error "j estimates how precise is the prediction pj. The �tness parameter Fj

evaluates the accuracy of the payo� prediction given by pj and is a function of the prediction error
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"j. At each time step the system input is used to build a match set [M] containing the classi�ers

in the population whose condition matches the detectors. If the match set is empty a new classi�er

that matches the input sensors is created through covering. For each possible action ai the system

prediction P (ai) is computed as the �tness weighted average of the classi�er predictions that

advocate the action ai in the match set [M]. The value P (ai) gives an evaluation of the expected

reward if action ai is performed. Action selection can be deterministic, the action with the highest

system prediction is chosen, or probabilistic, the action is chosen with a certain probability among

the actions with a not null prediction. The classi�ers in [M] that propose the selected action

are put in the action set [A]. The selected action is performed and an immediate reward rimm is

returned to the system together with a new input con�guration. The reward received from the

environment is used to update the parameters of the classi�ers in the action set corresponding to

the previous time step [A]�1. Classi�ers parameters are updated as follows.

First, the Q-learning-like payo� P is computed as the sum of the reward received at the previous

time step and the maximum system prediction discounted by a factor 
 (0 � 
 < 1). P is used

to update the prediction pj by the Widrow-Ho� delta rule [11] with learning rate � (0 < � � 1):

pj  pj + �(P � pj). Likewise, the prediction error "j is adjusted with the formula: "j  

"j + �(jP � pj j � "j). Fitness update is slightly more complex. Initially, the prediction error is

used to evaluate the classi�cation accuracy �j of each classi�er as �j = exp(ln�("j � "0)="0) if

"j > "0 or �j = 1 otherwise. Subsequently the relative accuracy �0j of the classi�er is computed

from �j and, �nally, the �tness parameter is adjusted by the rule Fj  Fj + �(�0j � Fj). The

genetic algorithm in XCS is applied to the action set. It selects two classi�ers with probability

proportional to their �tnesses, copies them, and with probability � performs crossover on the

copies while with probability � mutates each allele.

An important innovation, introduced with XCS is the de�nition of macroclassi�ers. A macro-

classi�er represents a set of classi�ers which have the same condition and the same action using

a new parameter called numerosity. Whenever a new classi�er has to be inserted in the popu-

lation, it is compared to existing ones to check whether there already exists a classi�er with the

same condition/action pair. If such a classi�er exists then the new classi�er is not inserted but

the numerosity parameter of the existing classi�er is incremented. If there is no classi�er in the

population with the same condition/action pair then the new classi�er is inserted in the popula-

tion. Macroclassi�ers are essentially a programming technique that speeds up the learning process

reducing the number of real, macro, classi�ers XCS has to deal with.
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Since XCS was presented, two genetic operators have been proposed as extensions to the original

system: Subsumption deletion [15] and Specify [6]. Subsumption deletion has been introduced to

improve generalization capabilities of XCS. Subsumption deletion acts when classi�ers created by

the genetic component have to be inserted in the population. O�spring classi�ers created by the

GA are replaced with clones of their parents if: (i) they are specialization of the two parents

that is, they are \subsumed" by their parents, and (ii) the parameters of their parents have been

updated su�ciently. If both these conditions are satis�ed the o�spring classi�ers are discarded

and copies of their parents are inserted in the population; otherwise, the o�spring classi�ers are

inserted in the population. Specify has been proposed to counterbalance the pressure toward

generalization in environments that allow few generalizations. Specify acts in the action set when

oscillating classi�ers are detected; this condition is detected comparing the average prediction error

of classi�ers in the action set "[A] with the average prediction error of classi�ers in the population

"[P ]. If "[A] is twice larger than "[P ] and the classi�ers in [A] have been updated, on average, at

least NSp times then a classi�er is randomly selected from [A] with probability proportional to its

prediction error. The selected classi�er is used to generate one o�spring classi�er in which each #

symbol is replaced with a probability PSp with the corresponding digit in the system input. The

resulting classi�er is then inserted in the population and another is deleted if necessary.

4 Design of Experiments

Discussions and experiments presented in this paper are conducted in the well-known \woods"

environments. These are grid worlds in which each cell can be empty, can contain a tree, \T"

symbol, or otherwise food, \F". An animat, placed in the environment, must learn to reach food.

The animat senses the environment by eight sensors, one for each adjacent cell, and it can move

in any of the adjacent cells. If the destination cell is blank then the move takes place; if the cell

contains food the animat moves, eats the food and receives a reward; while if the destination cell

contains a tree the move does not take place. If the animat has an internal state, it can modify the

contents of the register performing an internal action in parallel with the external action performed

in the environment. The set of external actions, in such a case, is enriched with a null action so

that the animat can \sit and think" that is, it can modify its internal state, without acting in the

environment.

Each experiment consists of a number of problems that the animat must solve. For each problem
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the animat is randomly placed in a blank cell of the environment. Then it moves under the

control of the classi�er system until it enters a food cell, eats the food, and receives a constant

reward. The food immediately re-grows and a new problem begins. We employed the following

exploration/exploitation strategy. Before a new problem begins the animat decide with a 50%

probability whether it will solve the problem in exploration or in exploitation. When in exploration,

the system decide, with a probability Ps (a typical value is 0.5), whether to select actions randomly

or to choose the action that predicts the highest reward. When in exploitation the GA does not act

and the animat selects the action which predicts the highest reward. In order to evaluate the �nal

solutions evolved, in each experiment exploration is turned o� during the last 2500 problems and

the system works in exploitation only. Performance is computed as the average number of steps

to food in the last 50 exploitation problems. Every statistic presented in this paper is averaged on

ten experiments.

5 XCS in non-Markovian Environments

XCS has no internal message list as Holland's classi�er system, thus it only learns optimal policies

for Markovian environments in which optimal actions are solely determined by the state of current

inputs. When the environment is non-Markovian, XCS converges to a suboptimal policy. As

an example consider the Woods101 environment (see Figure 1 in Section 2) in which two states,

indicated by the arrows, return the same sensory con�guration to the animat but require two

di�erent optimal actions: The right cell requires a go south-west movement while the left cell

requires a go south-east movement. The animat, when in these cells, cannot choose the optimal

action only examining the current sensory inputs, but it needs to remember at least the previous

state examined. Figure 2 compares the performance of XCS in Woods101, solid line, with the

optimal performance that the system can achieve with one bit of internal memory, dashed line.

As we expected, XCS does not learn an optimal solution for Woods101, but it converges to a

suboptimal policy, that is displayed using a vector �eld in Figure 3. Lines in each free position

corresponds to the best action that the �nal policy suggests. As it can be noticed, XCS assigns

equal probability to the two actions go south-east/go south-west when the animat is in the two

aliasing positions that is, the animat can go to the food if the correct action is selected, or it can

go back to another position for which the optimal action is to return into the aliasing cell. This

policy is an e�cient stochastic solution for the Woods101 problem, and is very similar to the one
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Figure 2: XCS in Woods101.

found for the same environment with ZCS [1]. In order to evolve an optimal solution, XCS needs

some sort of memory mechanism.

6 Adding Internal Memory to XCS

We now extend XCS with internal memory as done for ZCS in [1]. An internal register with

b bits is added to XCS architecture; classi�ers are extended with an internal condition and an

internal action that are employed to \sense" and modify the contents of the internal register.

Internal condition/action consist of b characters in the ternary alphabet f0,1,#g. For internal

conditions, the symbols retain the same meaning they have for external condition, but they are

matched against the corresponding bits of the internal register. For internal actions, 0 and 1

set the corresponding bit of the internal register to 0 and 1 respectively, while # leaves the bit

unmodi�ed. There are nine possible external actions, eight moves and one null action, encoded

using two symbols in the alphabet f0; 1;#g. Internal conditions/actions are initialized at random

as usual with \don't care" symbols inserted in internal parts with probability PI#. The new

parameter PI# is introduced to separate the concept of generalization in the environment that is

based on external condition/action of the classi�er and generalization in the internal memory of

the system. Experimental results, not presented here, suggest in fact that it is useful to distinguish

the concept of how many generalizations an environment allows and how many generalizations the

corresponding hidden state problem allows. In the rest of the paper, we refer to XCS with b bits of
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Figure 3: Vector �eld for the policy in Maze.

internal memory as XCSMb, while we refer simply to XCSM when the discussion is independent

of the value b.

XCSM works basically as XCS. At the start of each trial, the internal register is initialized

setting all bits to zero. Then at each time step the system input and the contents of the register

are used to build the match set [M] containing the classi�ers in the populations whose external

condition matches the system inputs and whose internal condition matches the contents of the

internal register. The system prediction P (ai; sj), which evaluates of the expected reward if action

pair ai, sj is performed, is computed as in XCS. As for XCS, action selection is deterministic in

exploitation, and probabilistic in exploration. Classi�ers in [M] which propose the selected action

pair are put in the action set [A]. The external action and the internal action of the selected action

pair are performed in parallel and an immediate reward rimm is returned to the system with a

new sensory input. The reward received from the environment is employed to update classi�ers

parameters corresponding to the previous time step; The credit assignment procedure is the same

as for XCS. Specify is applied to bits of both condition parts; bits of internal condition are speci�ed

using the contents of the internal register.

7 XCSM in non-Markovian Environments

We apply XCSM to two non-Markovian environments in order to test whether the system can

learn optimal policies in environments that are partially observable. First, we consider Woods101

an environment with two aliasing states that can be solved employing one bit of internal memory.

Then, we apply XCSM2 to Woods102, an environment with four aliasing states.
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7.1 XCSM in Woods101

We apply XCSM to the Woods101 environment presented in Section 5, which has two aliasing

states and, as pointed out previously, can be solved by an animat with one bit of internal memory.

XCSM1 is applied to Woods101with a population of 1600 and 800 classi�ers, Subsumption deletion

and Specify do not act. XCSM parameters are set as follows: �=0.2, 
=0.71, �= 25, "0=0.01,

�=0.1, �=0.8, �=0.01, �=0.1, �=0.5, P#=0.2, PI=10.0, "I=0.0, FI=10.0, PI#=0.5, Ps=0.5. 1

Results for XCSM1 with 1600 classi�ers reported in Figure 4 (solid line) show that when explor-

ation acts, before 6500 problems, the performance is slightly suboptimal since the system tends to

perform internal actions that are not optimal; then, when exploration stops the system perform-

ance becomes very stable. Results for XCSM1 with a population of 800 classi�ers, dashed line in

Figure 4, show that the system converges to a slightly suboptimal policy that is quite unstable.

The analysis of each experiment for XCSM1 with 800 classi�ers shows that in most of the experi-

ments the system converges to an optimal solution that is also stable, as the example reported in

Figure 5 shows. Sometimes it happens that the convergence is not so stable as in Figure 5 but,

at a certain point of the evolution, the population is suddenly corrupted due to unlucky explor-

ation, see Figure 6. Accordingly, XCSM performance drops, higher peak in Figure 6, but then

the generalization mechanism of XCS(M) recovers the dangerous situation and the system �nally

1Some of these parameters have not been presented in the XCS overview but are reported here for completeness.
We refer the reader to [14] for a complete discussion of those parameters.
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Figure 5: Best convergence for XCSM1 in Maze with 800 classi�ers.

converges to optimal performance. Unfortunately there are cases in which, due to a strong genetic

pressure, the generalization mechanism is too slow for recovering from a corrupted population,

and the system is not able to evolve an optimal solution, as shown in Figure 7. This phenomenon

was already reported in [6] for Markovian environments where the Specify operator was proposed

for recovering potentially dangerous situations. Accordingly, if we apply XCSM1 with Specify to

Woods101 using 800 classi�ers, the system is able to guarantee a stable performance as shown in

Figure 8.

In order to understand why a population 800 classi�ers can be too small it is useful to analyze

how the search space changes when internal memory is introduced. As shown in [14], XCS builds

a complete mapping for the function X �A) P from states/actions pairs to predicted rewards.

Since XCSM keeps a all the features of XCS, it still tends to build a complete mapping of such

function that for XCSM must also represent the mapping for internal conditions and internal

actions. Hence, when one bit of internal memory is employed the function that XCSM1 tries to

map becomes X �f0; 1g�A�f0; 1;#g ) P , thus the search space becomes six times larger. At

this point it is interesting to analyze how the number of macroclassi�er in the population varies for

the experiments with XCSM1 using Specify with 800 classi�ers. Results reported in Figure 9 show

that, although the maximum number of classi�er is set to 800 the population of macroclassi�ers

oscillates between 245 classi�ers and 280 classi�ers; while a complete mapping of the function

above requires 540 classi�er, thus XCSM successfully evolves a compact representation of the
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Figure 6: XCSM1 in Maze with 800 classi�ers. An unlucky exploration causes a corruption of
the population (higher peak) that is successfully recovered by the generalization mechanism of
XCS(M).

function which maps state/action pairs in predicted rewards.

7.2 XCSM in Woods102

As a second experiment, we test XCSM in Woods102 [1], a more di�cult environment shown in

Figure 10(a). Woods102 has two types of aliasing states: the former, see 10(b), is encountered in

four di�erent positions in the environment, while the latter, see 10(c), is at one of two di�erent

positions in the environment. An internal state with two bits, giving four distinct internal states,

should be su�cient to disambiguate the aliasing states in order to converge to an optimal policy.

XCSM2 is applied to Woods102 with 2400 classi�ers. Results reported in Figure 11 show that

XCSM2 cannot converge to a stable policy in Woods102 when Specify does not act. The system

initially reaches a suboptimal policy, �rst slope, then the learning becomes unstable and the pop-

ulation is rapidly corrupted; �nally, when exploration stops at the beginning of the big slope, the

performance drops. The analysis of single experiments shows that the performance of the system

is very similar for each run, accordingly the behavior of XCSM2 cannot simply depend on unlucky

exploration, as for Woods101, but it indicates a more general convergence problem. We already

analyzed the behavior of XCS for Markovian problems in [5] where we showed that XCS fails to

converge to an optimal solution when the agent does not visit all the areas of the environment

frequently. Accordingly, we proposed a new exploration strategy called teletransportation which
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Figure 7: XCSM1 in Maze with 800 classi�ers. An unlucky exploration causes a corruption of the
population that the system is not able to recover. Accordingly XCSM1 is not able to converge to
an optimal solution.

tries to guarantee an uniform exploration of the environment. Teletransportation works as follows:

when in exploration, the animat is placed randomly in a blank cell of the environment; then it

moves following one of the possible exploration strategies proposed in the literature. If the animat

reaches a food cell by a maximum number Mes of steps then the exploration ends; otherwise, if

the animat does not �nd food by Mes steps, it is \teletransported" to another blank cell and the

exploration phase is restarted. This strategy guarantees, for small Mes values, that the animat

visits all the areas of the environment with the same frequency.

We now extend the results presented in [5] to non-Markovian environments applying teletrans-

portation for solving Woods102 with XCSM2. Teletransportation for XCSM is implemented as

done for XCS except for the fact that in XCSM the internal register is reset every time the an-

imat is teletransported. We apply XCSM2 with teletransportation to Woods102 with a population

of 2400 classi�ers. Results reported in Figure 12 show that the system rapidly converges to an

optimal policy that is also stable.

7.3 Discussion of the Results

Results presented in this section, show that XCS with the internal memory mechanism proposed

by Wilson is able to converge to optimal solutions in non-Markovian environments. When XCSM

fails to converge to optimal performance it depends not on the memory mechanism but rather
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Figure 8: XCSM1 with Specify in Maze with 800 classi�ers.
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Figure 9: The size of the population in macroclassi�ers for XCSM1 with Specify in Maze when
800 classi�ers are employed.
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Figure 11: XCSM2 in Woods102.
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Figure 12: XCSM2 with teletransportation in Woods102.

on more general phenomena. First, unlucky exploration can cause a corruption in the population

that sometimes may be not overcome by the generalization mechanism of XCS; in such cases, the

Specify operator is useful to counterbalance the e�ects of unlucky exploration, as the experiments

with the Woods101 environment show. Most important the system fails to converge to optimal per-

formance when, due to the structure of the environment, the agent is not able to visit all the areas

of the environment uniformly [5]. Accordingly, the exploration strategy called teletransportation,

introduced in [5] for Markovian environments, can be employed to guarantee an uniform explora-

tion in non-Markovian environments in order to evolve an optimal policy, as the experiments with

Woods102 show.

8 Stability of Learning in XCSM

Results presented in [9], pag. 20, for ZCS with internal memory show increasing instability in

performance for increasing internal memory sizes. We now apply XCSM to a series of environments

using di�erent size of internal memory to test the stability of the system. The hypothesis we test

is that the generalization mechanism of XCS can lead to a stable and optimal policy even if large

internal memory sizes are employed.

As a �rst experiment, we apply XCS, XCSM1 and XCSM2 to Woods1 shown in Figure 13. The

right and left edges of the grid are connected and so are the top and the bottom edges. Woods1

is a Class 1 environment that does not require an internal state and is easily solved by XCS. The
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hypothesis we test is that XCSM is able to learn a stable and optimal policy for large b values even

in an environment that does not require internal state. XCSM parameters are set as follows: N

= 800, �=0.2, 
=0.71, �= 25, "0=0.01, �=0.1, �=0.8, �=0.01, �=0.1, �=0.5, P#=0.5, PI=10.0,

"I=0.0, FI=10.0, PI#=0.3. Figure 14, reports the results of the experiments for XCS, XCSM1 and

XCSM2; curves are averaged over ten runs. XCSM learns how to reach food in an optimal way

even when three bits of memory are employed. It is worth noticing that even if XCSM is applied

to search spaces of very di�erent sizes, due to the generalization over internal memory, there is

almost no di�erence in the convergence rate between XCS and XCSM2. The analysis of �nal

populations reveals that the slight degradation in performance when b increases mainly depends

on external null actions that sometimes the system performs. Null actions are \useless" in Woods1

since the environment would not require any operation on the internal state and consequently any

null action. But XCS tends to evolve complete input/output mappings and allocates resources to

all the possible external actions, even to the null action. Accordingly, some null action is chosen

during random exploration and gets system resources.

The second experiment consists of applying XCSM1, XCSM2 and XCSM3 to Woods101. Para-

meters are set as for the previous series of experiments except for the following ones: N = 1600,

P# = 0:2, PI# = 0:3. Results for Woods101, reported in Figure 15, are similar to the ones for

Woods1. Generalization mechanism of XCS, and consequently of XCSM, successfully generalizes

over internal memory bits leading to almost no di�erence in performance when more bits of internal

memory are employed.

Results for both environments con�rm that XCSM learns a stable and optimal policy even when

a larger number of internal memory bits is employed. At this point is worth noticing that even

three bits of internal memory may appear only a few, most of the environments presented in

literature requires only one or two bits to disambiguate aliasing situations [14, 1].
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9 Sequences of Actions in the Internal Memory

In the previous sections we applied XCSM to environments in which the optimal solution requires

the agent to visit at most one aliasing state before it reaches the food, and the goal state is very

near to the aliasing cells. The optimal policy for such type of environments is quite simple, and it

usually requires only one action on the internal memory in order to reach the goal state. We now

want to test XCSM in an environment where (i) the animat has to evolve an optimal strategy to

visit more aliasing positions before it can eat; and (ii) longer sequences of actions must be taken

to reach the goal state. The optimal solution for this type of environment can be far more complex

than that for environments previously presented in the literature of classi�er systems. Because of

(i) the animat have to perform a sequence of actions in the internal memory instead of a single

action; while, as shown in [1], the longer the sequence of action that the agent needs to reach the

goal state is, the more di�cult is the problem to solve.

Maze7 is a simple environment, see Figure 16, which consists of a linear path of nine cell to food

and it has two aliasing cells, indicated by two dashed circles. Nevertheless, Maze7 is more di�cult

than the previous ones in that: (i) it has two positions, at the end of the corridor, from which two

aliasing states must be visited to reach the food cell; moreover (ii) it requires a long sequence of

action to reach food. We apply XCSM1 with Specify operator to Maze7 with a population of 1600

classi�ers. Results are reported in Figure 17; as in the previous experiments we presented, during
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Figure 16: The Maze7 Environment.

the last 2500 problems exploration is turned o�. Figure 17 shows that while exploration acts the

system cannot converge to an optimal solution, but when the �nal population is evaluated turning

o� exploration, at beginning of the peak, XCSM1 evolves an optimal solution to the problem. The

analysis of the population dynamic shows two main facts. First, when exploration acts the system

is not able to learn an optimal policy for some of the positions at the end of the corridor. Thus,

the system learns a policy that is not globally optimal, hence the performance of XCSM1 drops

when an experiment starts in positions for which the optimal policy is not evolved and the overall

performance oscillates. Second, when exploration stops most of the classi�ers evolved during the

previous phase are eliminated, the �nal policy is thus formed by classi�ers created by the covering

operator. Accordingly, if we apply XCSM1 to Maze7 only in exploitation, that is the GA does

not work and always the best action is selected, XCSM1 easily converges to a suboptimal solution

for Maze7, see the solid line in Figure 18. The analysis of single runs shows that in many cases
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XCSM1 converges to the optimal performance, lower dashed line, while seldom the performance

is suboptimal, upper dashed line.

Maze7 is a simple problem for XCSM, indeed it is solved using a very basic version of XCSM.

Unfortunately, a system which only relies on covering and exploitation is unacceptable since it does

not employ any search procedure and thus, in general, cannot guarantee the convergence to an

optimal policy; moreover it throws away all the generalization power of XCS. A further analysis of

the behavior of XCSM in Maze7 suggests that the exploration strategies currently employed in the

study of XCS are too simple for XCSM. Exploration in XCS is only done \in the environment" and

relies both on the structure of the environment and on the strategy employed. Instead in XCSM

exploration is also done \in the internal memory"; accordingly, the exploration of the possible

policies for updating the internal register only depends on the agent strategy, that in XCS(M) is

random. Consequently, as the sequence of internal actions that must be performed to reach the goal

state becomes more complex, the probability that a speci�c policy is experimented dramatically

decreases. We thus conclude that more adequate exploration strategies should be investigated in

order to develop better classi�er system.

Another set of experiments for XCSM with two and three bits of memory, not reported here for

lack of space, shows that a greater memory size reduces the peak, see Figure 17, which separates the

explore/exploit phase from the exploitation phase, although the �nal performance is still slightly

sub-optimal. These results can be easily explained considering how the problem changes when

more bits of memory are employed. As the size of the internal register increases, the state/action

space becomes larger but also there are more admissible optimal policies, which means that there

are more possible solutions the system can experiment. This suggest an important aspect of XCSM

that will need further analysis: in environments which require complex policies for the internal

memory, XCSM is able to use redundant bits of internal memory in order to evolve more stable

solutions.

10 Conclusions

We have implemented and tested XCS when the memorymechanism proposed by Wilson is added.

We applied XCS with internal memory, we call it XCSM, with di�erent sizes of internal memory

to non-Markovian environments with two and four aliasing positions. The results we present show

that, in a simple environment, such as Woods101, XCSM converges very easily to an optimal solu-
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Figure 17: XCSM1 with Specify in Maze7.
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tion that has also a compact representation. When the system faces more complex environments,

special operators or di�erent exploration strategies are needed to guarantee convergence. We then

analyze the behavior of XCSM in an environment for which the optimal policy requires sequences

of actions in the internal register; experimental results show that, even if the problem is simple,

XCSM is not able to evolve an optimal policy for all the positions in the environment. Our analysis

suggests that the exploration strategies currently employed in the study of XCS are too simple to

guarantee the convergence of XCSM to a policy that is optimal for all the areas of the environment.

Accordingly we suggest that better exploration strategies should be developed in order to obtain

better classi�er systems. Finally, we show that XCSM performance is very stable with respect to

the size of the internal register employed; hence, in environments which require complex policies,

XCSM is able to use redundant bits of memory in order to evolve more stable solutions.
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