
Abstract

Previously we have applied rule linkage to ZCS
and shown that the resultant system demonstrates
performance improvements over ZCS in a series
of sequential tasks, particularly tasks which
present ambiguous stimuli to the system. In this
paper we show that similar benefits can be gained
by applying rule linkage to the more complex
XCS. We then show that the benefits of rule-link-
age can be increased by further XCS specific
modifications to the system’s rule-linkage mech-
anisms.

1 INTRODUCTION

Wilson and Goldberg (1986) originally proposed the theo-
retical possibility of forming rule-clusters or “corpora-
tions” within the rule-base of a Michigan-style classifier
system (Holland, 1978); a theory that was further devel-
oped by Smith (1992).

In our previous work we have implemented a corporate
classifier system (CCS) (Tomlinson and Bull, 1998, 1999)
based on the ideas of Smith (1992) which demonstrates that
rule-linkage can, for a certain class of problems, offer ben-
efits to a system based on the zeroth-level classifier system
(ZCS) (Wilson, 1994). Here we show that similar benefits
can be gained when similar rule-linkage mechanisms are
applied to XCS (Wilson, 1995).

The paper is arranged as follows, a brief description of
XCS is given in the next section, followed by an overview
of the rule-linkage mechanisms implemented in CCS. The
application of rule-linkage in XCS is then discussed and
performances of XCS and CXCS are compared in two con-
trasting classes of environments. The first, Woods2 (Wil-
son, 1995) tests the systems’ abilities to form external
associations, and in particular the capability to form accu-
rately general hypotheses. The second class of environ-
ments is comprised of Delayed Reward Tasks (DRTs)

(Tomlinson and Bull, 1998) and tests the systems’ abilities
to form predominantly internal associations. A number of
modifications to the rule-linkage mechanisms are then pro-
posed which are shown to improve performance of CXCS
in this second class of environments.

2 XCS

The most significant differences between XCS and tradi-
tional Michigan-style systems are  that XCS dispenses with
the internal message list and perhaps more importantly that
in XCS, rule fitness for the genetic algorithm (GA)(Hol-
land, 1975) is based not on rule predictions (or strengths)
but on the accuracy of these predictions (Frey and Slate,
1991). The intention is to steer the population to form a
complete and accurate mapping of the search space rather
than to simply focus on the higher payoff niches in the en-
vironment.

A further difference is that rather than executing the GA
panmicticly, XCS restricts GA activity to within niches de-
fined by the match sets (Booker, 1985). XCS has been
shown to evolve rules that are maximally general, subject
to an accuracy criterion. This encourages efficiency in
knowledge representation within the rule-base. A brief
overview of XCS functionality as implemented here is now
given.

On each time-step, within the performance component, the
system receives some binary-encoded sensory input and
forms a match-set [M] consisting of all stimulus matching
rules. A system prediction is then formed for each action
represented in [M] according to a fitness-weighted average
of the predictions of rules in [M] that advocate that action.
The system action is selected either deterministically, prob-
abilistically (roulette-wheel selection) or randomly from
actions with non-zero predictions. Rules in [M] that advo-
cate the selected action form an action-set [A]. The action
is sent to the system effectors and a reward may or may not
be received from the environment. If [M] is empty a cover-
ing operator is employed to create a new matching rule.

Reinforcement in XCS consists of updating three parame-
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ters, p, E and F for each qualifying rule.A rules fitness (F)
is updated every time it belongs to [A]-1 (or [A] in a single-
step problem). The fitness is updated according to the rela-
tive accuracy of the rule within the set. There are three
steps to the calculation:

1] Each rule's accuracy Kj is determined as follows:

Kj = exp[(lnα)(Ej -E0)/E0)] * 0.1  for Ej>E0 otherwise 1.

2] A relative accuracy K'j is determined for each rule by di-
viding its accuracy by the total of the accuracies in the set.

3] The relative accuracy is used to adjust the classifier's fit-
ness Fj using the moyenne adaptive modifee (MAM)(Wil-
son, 1995) procedure: If the fitness has been adjusted 1/β
times, Fj <- Fj + β(K'j - Fj). Otherwise Fj is set to the aver-
age of the current and previous values of K'j .

Next Ej is adjusted using P (see below) and the current val-
ue of pj. The Widrow-Hoff technique is used as follows:

Ej = Ej + β(|P - pj | - Ej).

Finally pj is adjusted. The maximum P(ai) of the system's
prediction array is discounted by a factorγ (0 <γ <= 1) and
added to any external reward from the previous time-step.
This value is called P and is used to adjust the predictions
of the rules in [A]-1using the Widrow-Hoff delta rule (Wil-
son, 1995) with learning rateβ (0 <β <=1).

pj = pj  +β(P - pj).

The GA acts on the match-set [M] . Two rules from the
niche are selected for reproduction stochastically based on
rule-fitness. The XCS population, [P] may be of fixed size
or of variable size (and initialized to 0). A maximum size,
Np is defined. If [P] contains less thanNp members, the
copies are inserted into the population and no compensat-
ing deletion occurs. Otherwise two rules are selected from
[P] stochastically. Each rule keeps an estimate of the size
of the match-sets in which it occurs. A rule’s deletion prob-
ability is set proportional to this match-set size estimate;
this tends to balance system resources across all presented
niches.

The GA is activated within a match set if the number of
time-steps since the last GA in that match-set exceeds a
specified threshold. Each rule is time-stamped at birth with
the value of a counter incremented each time-step. When a
match-set is formed XCS computes the average time-stamp
of its rules and executes the GA if the difference between
the average and the current counter value exceed the
threshold value (typically this threshold is set to 25).

An action selection strategy is randomly determined at the
beginning of each task. There is a 50% likelihood that on
each step the action will be selected randomly from those
advocated within [M] by rules with non-zero predictions.

Such trials are termed exploration trials. On the other trials,
termed exploitation trials, a deterministic policy is adopted.
During testing exploration is turned off for the last 1000 tri-
als. The XCS GA is only active on exploratory trials, and
as such is also turned off at the end of runs. The aim is to
facilitate evaluation of the resultant rule-base’s utility at the
end of the learning period.

In this work, the system is equipped with a fixed size pop-
ulation (randomly initialised), and the concept of macro-
classifiers (Wilson, 1995) is not employed. Wilson states
that this is simply a coding issue and as such should not ef-
fect results.

3. CORPORATE CLASSIFIER SYSTEMS

Our previous CCS, based on Wilson’s ZCS model (1994),
employs linkage between rules in the population to form
rule-chains or “corporations”. Each rule in the population
is equipped with two, initially inactivelink parameters, a
“link forward” and a “link back”. When activated, either, or
both of these links may reference another rule in the popu-
lation. The result of such associations is a population of ar-
bitrarily long rule-chains or corporations, whose members
are treated as collective units, both by the discovery com-
ponent and the performance component of the system.

Activities of the discovery component are based on  a
measure ofcorporate fitness. For a single rule, this value is
the same as its strength parameter as determined by the per-
formance component. For linked rules, corporate fitness is
set to the mean strength of all rules in that particular corpo-
ration.

If a corporate rule is selected for deletion then the corpora-
tion is first disbanded (the linked-list is separated) and then
the selected rule is deleted from the rule-base. If a corporate
rule is selected for reproduction then the whole corporation
is reproduced. The crossover mechanism is expanded to fa-
cilitate a form ofcorporate crossover which produces as
offspring, a single hybrid corporation which inherits sec-
tions of both parent corporations (see figure 1).

Corporations are encouraged to encapsulate temporal
chains of inference and so offer improved performance in
tasks, such as the previously mentioned delayed reward
tasks, which present arbitrarily ambiguous sensory stimuli.
Rule-linkage, initially triggered with a fixed probability of
0.1 per time-step, acts across subsequent match sets ([M])
choosing  a candidate to join probablistically (based on
strength), from each niche. Unlike the original ZCS design,
the GA is also restricted to acting in match set niches.
These precautions ensure that corporations tend to repre-
sent viable sequences of previously presented stimuli,
along with associated system responses.



In contrast to the original proposals of Wilson and Gold-
berg the performance component of CCS is made respon-
sive to the presence of corporations. As in ZCS, on each
time-step the system action is selected according to a rou-
lette-wheel selection policy based on the strengths of rules
within [M]. This rule is examined for corporate status (i.e.
is it linked to another rule?). If a corporate rule has been se-
lected then that corporation has absolute control over the
system until either a reward is received (at which point a
new task begins) or, the appropriate rule in the chain does
not match the currently presented stimulus. In either event
performance system functionality returns to standard ZCS
behavior.

So, if on some time-step t, a corporate rule takes control of
the system, then on the next step,t+1, if the next rule in the
corporation matches the new stimulus, control is held and
the action of this rule automatically becomes the system ac-
tion at time t+1. This characteristic of the performance
component is referred to as persistence and has been shown
to enable CCS to overcome sensory ambiguity during mul-
tiple-step tasks (Tomlinson and Bull, 1998).

Further encapsulation of corporations is achieved by pre-
venting any rule which has an active “link back” (i.e. a fol-
lower) from entering [M], unless it links back to the rule
that is currently in control of the system.

4. CXCS: CORPORATE XCS

The linkage mechanisms of CCS are now implemented in
a version of Wilson’s XCS. This version differs from the
original design in that on each invocation, the GA (which
acts in [M]) produces only a single offspring. As the XCS
GA activation policy is based on the mean age of classifiers
within the niche, it is anticipated that this difference will re-
sult in only minor performance variations. As the mean age
within the niche will be less reduced by each GA action due
to the addition of only one new rule, the GA should simply
occur slightly more frequently within each niche. During

comparisons, the GAs of both XCS and the corporate sys-
tem, CXCS, produce a single offspring rule or corporation
on each invocation.

Rules within the system are given the same linkage compo-
nents as those in CCS and linkage occurs again between
rules from subsequent match sets at a fixed rate (typically
a 10% probability on each step). Like the GA, linkage oc-
curs only on exploratory cycles and so is also turned off for
the last 1000 trials of testing. In CCS, rule selection for
linkage could be either random or probablistic, or deter-
ministic, based on the relative strengths of rules within the
niches. The equivalent parameter to ZCS/CCS rule strength
in XCS is the prediction parameter. In XCS it is the accu-
racy of the prediction that is used to evaluate rules, and it is
not in keeping with XCS philosophy to base discovery de-
cisions on the prediction parameter alone. Accuracy and
fitness are also discounted as possible weightings for rule
selection for linkage. In CXCS it is possible that rules that
appear to be inaccurate when evaluated alone are precisely
the rules that could benefit from rule-linkage. If the inaccu-
racy is due to some sensory deception then the context of a
corporate rule-chain may limit a rule’s activation to in-
stances in which it’s action results in a more predictable
consequence. In context the rule becomes more accurate.
This is the main motivation for developing CXCS. With
this in mind, selection for linkage in CXCS is determined
randomly from rules (whose appropriate link is unattached)
within the niche, imposing no bias based on the system’s
current perception of rule utilities.

Corporations are reproduced and evaluated collectively. As
such rules within a corporation should share certain param-
eters used by the discovery component. These are fitness,
which determines a rule’s chance of selection for reproduc-
tion, and the estimate of mean match set size which deter-
mines a rule’s chance of being selected for replacement;
two parameters are introduced, “corporate fitness” and
“corporate niche size estimate”. For single rules these pa-
rameters are identical to their existing fitness and match set
size estimates. For linked rules, these values can be deter-
mined in a number of ways. Each rule could be given the
average fitness and match set size estimate of all rules with-
in the corporation. Alternatively, corporate fitness could be
based on the lowest exhibited fitness within the corpora-
tion. In this way, a corporation is considered only as accu-
rate or fit as its weakest link. This approach certainly offers
the theoretical advantage of a bias against unwanted para-
sites within corporations.In the initial design corporate fit-
ness for each rule in a corporation will be set to the lowest
exhibited fitness within the corporation. Corporate niche
size estimates will be determined as the mean match set
size estimate within that corporate unit.

As in CCS, corporations can, while they continue to match
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Fig. 1: Corporate Crossover
Rules 1’, 6’ and 7’ are copies of the rules in the
original corporations. Rule 8 is the product of crossover
between rule 2 and rule 5.



presented stimuli, maintain persistent control of the per-
formance component. In CXCS corporations can only take
control during exploitation cycles. To allow such behavior
during exploration trials would represent a significant deg-
radation of the system’s discovery abilities. Again, as in
CCS, followers (rules with an active “link-back” compo-
nent) are given only limited access to [M].

When comparing systems that introduce different numbers
of offspring per invocation of the GA it is important to con-
sider the differences in relative rule replacement rates.
Without such consideration it is possible to generate quite
misleading comparisons of systems as rule replacement
concerns tend to be amongst the more fragile aspects of
classifier system design. To counteract this, a variable ele-
ment is introduced into the CXCS GA activation. The sys-
tem records the number of rules reproduced on each
invocation of the GA (i.e. the size of offspring corporation,
Sc). When the existent activation policy indicates that the
GA should fire, a further mechanism will only allow the
GA to fire with probability set according to the reciprocal
of the mean offspring size parameter, Sm (initialized to 1).
This estimate is adjusted on each invocation of the GA ac-
cording to the standard Widrow-Hoff delta rule (Wilson,
1995) with the learning rate parameterβ (typically 0.2), i.e.
Sm <- Sm + β( Sc - Sm). This modification to the GA acti-
vation mechanism ensures at least a more consistent rate of
rule replacement throughout testing, however the draw-
back is that a corporate system, compared to a standard sys-
tem will incur a relative reduction in crossover events. The
more significant factor is perhaps the rule replacement rate
and its effect on convergence within the rule-base, and so
here, the variable GA activation policy is adopted for all
tests.

An implementation of CXCS, as described above, is now
compared to XCS initially in Wilson’s Woods2, an envi-
ronment that does not require the presence of internal asso-
ciations within the system’s rule-base, and then in a series
of delayed reward tasks which can only be solved by the
formation of internal associations between rules.

5.  ANALYSIS OF PERFORMANCE

5.1 WOODS2
Woods2 (Wilson, 1995) is a two-dimensional, toroidal
grid-world comprised of 30 x 15 cells. Each cell in the grid
may be blank or occupied by one of four types of object,
two of which are “food” and two are “rocks”. The system
is considered to be an artificial animal which traverses the
rectilinear grid-world seeking food. It is capable of detect-
ing the sensor codes of objects occupying its surrounding
eight cells. These codes (each of which is three-bits long)
comprise the system’s stimulus at any time-step. 000 rep-

resents a blank cell, 110 and 111 represent food type ob-
jects, and 010 and 011 represent rocks. As such the
stimulus length is 24-bits, with the left-hand three bits rep-
resenting the cell due north of the current location, and the
remainder corresponding to cells proceeding clockwise
around it. On receipt of such a stimulus the system decides
upon one of eight actions, which represent an attempt to
move into one of the surrounding squares. If the cell is
blank, the system moves into it, if the cell is occupied by a
rock then the system is not able to make the move and if the
cell contains food then the move is allowed and the system
receives a reward (rimm=1000), this is considered to be the
termination of an individual trial. During testing, on the re-
ceipt of such a reward, the artificial animal, or animat (Wil-
son, 1985) is randomly relocated in some blank cell, again
ready to seek some food object. A record is kept of the
mean number of time-steps taken to reach food over a pe-
riod of 4,000 successive trials and this is used as a measure
of  system performance. For further details of Woods2 see
(Wilson,1995).

5.2 PERFORMANCE IN WOODS2
The XCS and CXCS models described above are now test-
ed in Woods2. System parameters for these tests are as in
(Wilson, 1995):
Rulebase Size:Np = 800,
Probability of # at an allele position in the initial popula-
tion: P# = 0.5,
Initial rule prediction = 10.0,
Learning Rate:β = 0.2,
Discount Factor:γ = 0.71,
Probability of crossover per invocation of the GA:χ = 0.8,
Probability of mutation per allele in the offspring:µ = 0.01,
If the total prediction of [M] is less thanφ times the mean
of the population ([P]), covering occurs:φ = 0.5.
GA activation threshold parameter= 25,
Number of single-rules or corporations produced by GA as
offspring per invocation, 1.
Initial rule error: = 0.0
Initial rule fitness = 10.0
accuracy function parameter: e0 = 0.01
accuracy function parameter:α = 0.1
Linkage Rate: = 0.1,

Plots of performance are presented (figure 2) which show
that both designs reach near optimal performance. Per-
formance plots here represent the average steps to food in
the last 50 exploit problems, and the curves are averages of
ten runs.

XCS achieves near optimal performance in Woods2 and so
it was unlikely that CXCS would offer performance im-
provements in this Markovian environment which presents
no sensory ambiguities to the system. The aim was simply



to assess the extent of incurred overheads due to the more
complex structures present in the new system. About 130
corporations of various sizes are present in the resultant
rule-base and this figure breaks down approximately as fol-
lows:

This accounts for almost half of the rule-base, and so their
presence can be considered significant. Their effect on per-
formance however is less so. In this instance it appears that
is an acceptable scenario. It should be stated that as the
linkage rate is increased from 0.1 the presence of corpora-
tions does start to degrade CXCS  performance in Woods2
more significantly (not shown).

The systems are now tested in a series of environments in
which it is hoped that corporations will in fact be able to
improve system performance.

5.3 SIMPLE DELAYED REWARD TASKS (DRTs)
On each ofN timesteps the system is presented with a stim-
ulus and must select one ofA actions, whereA is a variable
integer value which defines the breadth of a maze.N is the
number of states or nodes to a reward and thus defines the
maze depth. AfterN steps, the system receives a reward
from the environment and a new task then begins. The size
of the reward depends on which route the system chooses
and so over time the system learns the optimum reward
yielding route through the maze.

There is however more than one maze. There can be up to
Mz different mazes. The system is informed which particu-
lar maze it is being presented with only on the first time-
step of each trial. On all subsequent steps the stimulus is
representative only of the current time-step in the trial. The
maze is selected randomly at the start of each trial.

Figure 3 illustrates a simple task of this type withA set to
2,N set to 2 andMz set to 2. The environmental stimulus at
each time-step is also included. In this example, a reward
of 1000 is awarded for one route on each map. All other

routes receive a reward of 0.

Throughout this work, as in figure 3, the message lengthL
is set to 3. WithL set to 3 there are 8 possible stimuli and
so for a two map problem the maximum depth will be 7, as
the first time-step (ts0) takes two stimuli. Similarly withL
set to 3 a four maze problem may have a maximum depth
of 5.

In the task depicted in figure 3 rule-linkage will enable the
system to determine the appropriate move on the second
timestep (ts1). In maze one the correct action is 0 and in
maze two it is 1 (the stimulus however is the same - 001).

5.4  PERFORMANCE IN DRTs
Tests are now conducted in a series of four such delayed re-
ward tasks. On each time-step the system must choose one
of two actions (0 or 1). The first task, 2:2 consists of two
mazes of length two the second task, 2:3 consists of two
mazes of length three, etc. One path in each maze will yield
a reward of 1000, all others return a reward of 0. The mazes
are set up so that if the system selects the same action on
each step through the maze it will be guaranteed a reward
of 0. This precaution ensures that the successful solution of
the mazes is not achievable by a single completely general
rule, and will in fact require some form of cooperative be-
havior within the rule-base. Tests consist of a series of
10,000 trials and all curves are again averages of ten runs.
The plots (figures 4, 5, 6 and 7) represent the average score
over the last fifty exploitation trials. All parameters are as
in the previous tests in Woods2 with the exception of the
population size, (400), and the probability of a # at an allele
position in the condition of a rule (0.33). These are more
standard parameter settings, as used by Wilson when test-
ing ZCS (Wilson, 1994), and also when testing XCS in the
Boolean Multiplexor Problems (Wilson, 1995). Figures 4
to 7 also include plots of CXCS with linkage rate increased
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from 0.1 to 0.25. It can be seen that in these environments
an increase in rule-linkage does provide some benefit.

According to the XCS action selection strategy, on a fixed
proportion of trials selection will be random from all advo-
cated actions. On such an exploratory trial all rules are like-
ly to receive variations in profit according to the different
contexts in which they fire (even if all rules are 100% spe-
cific). This will clearly result in low perceived accuracy for
all firing rules. XCS accuracy is determined by a quite se-
vere function with a sharp cutoff beyond the acceptable er-
ror margin. In such mazes it is possible that all firing rules
on any time-step will exhibit a perceived accuracy of 0,
leading to each rule having a resultant relative accuracy,
and thus a fitness based on the reciprocal of the niche size.
Although, during an exploitation cycle, rules representing
the optimal system action may be present in the niche, with
the bid based on the prediction scaled according to fitness,
there will be no discernible bias towards the higher reward
yielding action and so the system has certain difficulties
mapping the maze which imposes rule co-dependencies
that XCS is unable to facilitate.

The effects of the above problem are illustrated by the state
of the rule-base at the end of testing and also by the contin-
ual activation of the cover operator, especially during the
last 1000 exploitation trials. On a 2:2 task for instance, the
rule-base will contain many rules of varying specificity that
match the “second step stimulus” (001). All of these with
the exception of the fully general ### rules have a fitness
value of 0. The prevalent ### rules tend to increasingly oc-
cupy both niches and thus their prediction values will slow-
ly fall to 0 (due to the previously mentioned precautions
taken with the reward scheme designs), and over this peri-
od their fitness values will gradually rise to maximum fit-
ness. Eventually [M] prediction on the second step falls
below the threshold parameter value and the cover operator
is invoked. This process continues throughout the test peri-
od.

CXCS does exhibit some ability to map these “internal as-
sociation” tasks, however results are somewhat disappoint-
ing and certainly do not compare to the equivalent results
produced by running the CCS model in the same tasks
(Tomlinson and Bull, 1998, 1999). In a 2:2 task, for exam-
ple, the resultant rule-base at the end of testing will typical-
ly contain about 100 corporations. These will be of
indeterminate length and there will be a number of exces-
sively long corporations. In the equivalent CCS test, the re-
sultant rule-base would typically contain approximately
200 corporations, of which, just about all were of length
two. In other words the entire population had linked to
form corporations of the appropriate length to tackle the
presented task.

Finally, in the next section, we show that the CXCS mech-
anisms can be modified to provide significant performance
improvements in the more complex delayed reward tasks.
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Fig 6. Performance in DRT 4:2
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6. MODIFICATIONS TO CXCS

6.1 A RE-EVALUATION OF CORPORATE FITNESS
Wilson (1995) suggests as a future avenue of research that
the concept of fitness based on accuracy of prediction
could be extended to classifiers with expectons. An expec-
ton takes the form of an additional condition, but is a pre-
diction of the resulting sensation or stimulus.

Such a system does not only match stimulus action pairs
with prediction values, but with some anticipated stimulus.
Fitness for such rules may not only be based on accuracy of
prediction but may also, or separately, represent the accu-
racy of the expecton in predicting the next sensation. This
principle can be adapted for use in CXCS.

Although rules in CXCS do not have an expecton, if their
“link forward” is active, they are still associated with infor-
mation about some anticipated stimulus. This is in the form
of the condition of the rule that they are linked to. Actually
such a rule may be associated with information regarding
any number of anticipated future stimuli, dependent on the
length of the corporation.

With this in mind, an alternative measure of fitness may be
employed in CXCS for rules with active forward links,
based not only on the accuracy of their prediction but also
scaled according to the ratio of  “control hits”( Ch) to the
total number of times that control is received (Cc). If a rule
takes control of the performance component and on the
next time-step the following rule in the corporation match-
es the subsequent stimulus and therefore inherits control of
the system successfully, then this is considered to be a
“control hit”. If the rule fails to match the presented stimu-
lus, then this is a “control miss”. As such, this ratio acts as
a measure of how accurately the corporation is representa-
tive of some perceived aspect of the test environment. Ch
and Cc are updated each time the rule takes control of the
system (but on formation of [M]+1). The control ratio pa-
rameter is adjusted as follows: Cr = Ch / Cc. This is deter-
mined prior to fitness calculations. On fitness adjustments,
the relative accuracy parameter, K’ is scaled according to
the control ratio before the fitness parameter is updated in
the usual manner. As previously, corporate fitness is con-
sistent for all rules in the corporation and is based on the
lowest member fitness in the corporation. Corporate niche
size estimate is again set to the mean match set size esti-
mate of member rules.

Figure 8  shows performance plots of this modified version
of CXCS in the same series of four delayed reward tasks as
used in section 5. Rule linkage rate is again set to 0.25 and
all other parameters are as in section 5.

The new fitness evaluation produces improved results in

the harder delayed reward tasks. At the end of testing the
system generally contains about 100 corporations, most of
which are of the appropriate length for the particular task
(i.e. of length two or three). On inspection of the plots it is
clear that the excessive number of exploration trials are
creating difficulties for the  performance component. This
is evident by the abrupt performance improvement when
exploration is turned off for the last 1000 trials of testing.

6.2 A VARIABLE EXPLORATION RATE
An adjustment to the exploration/exploitation decision
process may offer performance benefits. One approach ex-
perimented with here is to reduce the probability of explo-
ration periodically throughout  the evaluation runs.

The initial probability is  0.5 and every 100 trials this is re-
duced by one tenth of the current value. This simulated an-
nealing of the system over time offers the performance
component increasing opportunities to evaluate the corpo-
rate rule structures. Due to the persistent nature of corpora-
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Fig 9. Performance of modified CXCS in DRTs.



tions this has become a somewhat serial affair, and so
perhaps the performance component now requires a reduc-
tion in the relative rate of genetic activity. Performance
plots (Figure 9) show that this modification offers some
benefit to CXCS in the harder of the four delayed reward
tasks. Apart from the variable exploration rate, the system
is identical to the system presented in section 6.1.

Within the population, accurate and thus fit corporations
are present which collectively map the entire problem
space of these tasks, i.e. for each map all possible routes
tend to be represented along with reasonable prediction
values for these routes, as represented by the predictions of
component rules within the corporations.

One final consideration is the evaluation of the modified
CXCS model in Woods2. It is important to ensure that the
new mechanisms do not disrupt system stability in a less
controlled environment than the time constrained delayed
reward tasks. Figure 10 shows performance in Woods2 of
the modified CXCS. All parameters are as in section 5.2.
At the end of 4,000 trials the system reaches food in an av-
erage of two steps to food. This plot is comparable with the
earlier plot (Figure 2) for CXCS with the original configu-
ration; improvements for delayed reward tasks have no sig-
nificant effect on stimulus response tasks here.

7. Conclusions

This work has shown that it is possible to include the cor-
porate concept in a system based on XCS and achieve sim-
ilar benefits to those gained in ZCS. The resultant system,
CXCS, demonstrates reasonably equivalent abilities to
XCS in tackling Woods2, an environment which offers
many opportunities for generalization. It is also capable of
making some internal associations necessary to solve the
delayed reward tasks presented here.

It has further been shown that performance improvements
in the delayed reward tasks can be gained by re-evaluating
corporate rule fitnesses according to their consistency in
maintaining control of the system, and also by reducing the
exploration rate during training. The modified CXCS was

tested in Woods2 and it was shown that the modifications
do not excessively disrupt performance in this environ-
ment.

From rule-base inspection, the modified fitness calculation
appears to encourage increased generalization within cor-
porations, certainly for “followers”, and to an extent which
accuracy permits. This is most apparent when examining
the rule-base after the system has been trained in Woods2
(not shown). A full investigation of the generalization abil-
ities of our CXCS represents future work.
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