
Abstract
The synthesis of artifacts reproducing behaviors
and properties of living beings is one of the
main goals of Artificial Life. These artificial en-
tities often evolve according to algorithms based
on models of modern genetics. Evolutionary al-
gorithms generally produce micro-evolution in
these entities, by mutation and crossover applied
on their genome. The aim of this paper is to pre-
sent Non-Homogeneous Classifier Systems,
NHCS, integrating the process of macro-
evolution. A NHCS is a derived type of classical
classifier systems, CS. In a standard CS, all clas-
sifiers are built on the same structure and own
the same properties. With a NHCS, the behavior
of an artificial creature is defined by the co-
evolution between several differently structured
classifiers making its organism. These agents,
moving in a 2D discreet environment with ob-
stacles and resources, must adapt themselves and
breed to build viable populations. Finally, eco-
logical niches and particular behaviors, individ-
ual and collective, appear according to initial
parameters of agents and environment.

1 Introduction
In A-Life, (Langton, 1989), artificial creatures like ani-
mats, (Wilson, 1985), generally evolving with a classifier
system, (Holland, 1975), use only one type of classifiers
and one structure for them. Genetic Algorithms, (Gold-
berg, 1989), or Evolution Strategies, (Bäck & Schwefel,
1993), controlling the evolution of a standard CS pro-
duces micro-mutations and crossovers inside classifiers.
A Non-Homogeneous Classifier System allows agents to
own several kinds of classifiers with different structures.
Moreover, creatures can undergo a structural mutation :
the macro-mutation, (Lattaud, 1998). It acts first on the
genotype of the agent by modifying the classifiers archi-

tecture, and secondly on the phenotype by add-
ing/removing sensors or other capacities.

In the agent classification written by Patrick Cariani,
(Cariani, 1991), the only forms of adaptive agents he
observed are natural animals. These agents adapt their
behavior according to their environment, but they also
adapt their interactions modules, like sensors and effec-
tors. If each type of classifier in a NHCS is in relation
with a particular sensor of a creature, then with a macro-
evolution process on the NHCS, this agent can be de-
fined as adaptive in the Cariani sense.

This paper presents the structure of the NHCS of arti-
ficial creatures and the associated macro-evolution proc-
ess. The first part shows an overview of the agent model
ETIC, (Lattaud, 1997), used to develop these animats.
The second section defines the concept of NHCS and the
evolution methods using the macro-mutation operator.
The next chapter describes experimental results obtained
on an artificial life application. Then, the conclusion dis-
cusses results and presents future works about NHCSs.

2 ETIC overview
A classification is necessary to implement a deep evolu-
tion of agents structure. The reactive/cognitive model,
(Ferber, 1995), is not enough flexible for this kind of
evolution. Agents build with the External Temporal In-
ternal Classification, ETIC, can change from one class to
another, and evolve progressively from simple to com-
plex. Each of these classes gives particular functions to
agents. The three base classes of ETIC are :

- E : External, an agent belonging to one or more
subclasses of E possesses capacities to get infor-
mation from its environment.

- T : Temporal, this kind of class proposes to agents
memory and planning functionalities.

- I : Internal, the subclasses of I determine if agents
have a knowledge of some of their internal states,
but also if agents can modelize other agents.
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The application testing the NHCS method uses mainly
five ETIC subclasses :

- Epn : This class represents a non-oriented local
perception. An Epn agent perceives all items in its
surrounding environment in a range of n1.

- Epon : The perception of Epon agents is local and
oriented. Epon agents perceive only the environ-
ment in front of them, according to their direction.

- Edon : Agents belonging to this class have an ori-
ented fuzzy perception. They cut the environment
in front of them in four dials and they perceive
only the number of each kind of objects in each
dial. This perception can be wider than the first
two.

- Eck : This class allows agents to communicate a
part of their knowledge to other agents. A com-
munication process can occur if an Eck agent per-
ceives at less one other Eck agent. This communi-
cation is direct, point-to-point, between these two
agents. The transmitted information is the best
classifier of each other.

- Ipenergy : An agent with this class codes its en-
ergy level2 in their classifiers. So, it has an inter-
nal representation of its energy and its behavior
depends on it.

The Figure 1 shows the perception of three types of
agents exploiting E subclasses : Ep1 agent, Epo3 agent
facing east and Edo5 agent facing west.
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Figure 1 : Ep1, Epo3 and Edo5 agents.

These classes are cumulative, agents can be Ep1Epo3,
Epo2Eck, Edo5Ipenergy … The macro-evolution process
uses NHCS by adding/removing classes or increas-
ing/decreasing class parameter. This evolution allows a
deep modification of agents structure, from a phenotypic

                                                
1 In a discreet environment, n is a distance of perception defined by
the minimum number of elementary cells between two points.
2 In this artificial life problem, animats have an energy parameter de-
fining their health level and their fertility for reproduction. If energy
falls under 0, the creature dies.

and a genotypic point of view. Agents can adapt their
morphology and their behavior to the environment.

3 Non-Homogeneous Classifier System
A Non-Homogeneous Classifier System is an hybridiza-
tion of classical classifier systems defined by John Hol-
land. In a standard CS, generally, all classifiers have the
same structure and same properties. In a NHCS, several
types of classifiers coexist and are merged. They are
build with different structures and owns different prop-
erties.

For example, an Ep2Edo7 agent can use either its local
precise perception or its fuzzy dial perception to produce
an action in a giving situation. Such agent possesses in
its artificial organism, after some learning steps, Ep2 and
Edo7 classifiers. However, if the agent has undergone a
macro-evolution, it could also combine other classifiers
like Ep1, Edo1, Edo2…Edo6. These classifiers are to-
tally different and must co-evolve to develop adapted
behaviors.

The process of macro-evolution is strongly linked to
the macro-mutation operator. This operator is added to
the three classical operators of GAs : Mutation, cross-
over and selection. It gets its own cycle, determining the
frequency which the macro-mutation can occur, and the
following parameters :

- Pmac : The macro-mutation rate.
- Pevol : The evolution rate, representing the prob-

ability of evolution/devolution of the agent.
- Pclass : The class-evolution rate, defining if the

evolution/devolution process acts on an entire
ETIC class or only on the parameter of an existing
class of the agent.

The Figure 2 shows the algorithm for the macro-
mutation operator.
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Figure 2 : Macro-mutation algorithm.

For example, if an agent is Ep1Epo3 and undergoes a
macro-mutation, four cases exist :

- Rand1<=Pevol and Rand2<=Pclass : An evolution
occurs on an entire class. So, the agent adds a new
class, it can become Ep1Epo3Edo1, Ep1Epo3Eck
or Ep1Epo3Ipenergy.

- Rand1<=Pevol and Rand2>Pclass : In this case,
the evolution takes place on an existing class, the
agent evolves to Ep2Epo3 or Ep1Epo4.

- Rand1>Pevol and Rand2<=Pclass : The devolu-
tion is on a complete class. The agent loses a class
and mutates to Ep1 or Epo33.

- Rand1>Pevol and Rand2>Pclass : This is a class-
less devolution, the agent decreases the parameter
of one existing class, but neither below 1, so the
unique solution is Ep1Epo2.

The macro-evolution described previously is per-
formed according to a cycle, but another way to proceed
it exists : During an asexual reproduction. If the repro-
duction of agents is asexual, two fertile4 agents are nec-
essary to create a third one. But, if two agents with dif-
ferent classes can mate and give birth to a viable child,
how the organism of this offspring is built ? In this sys-
tem, no constraint prevents this reproduction and a

                                                
3 If the agent has only one class, it can't lose it.
4 Age and energy conditions.

macro-evolution on the child NHCS occurs. This result-
ing NHCS is a combination of parents NHCSs with a
potential macro-mutation, with Pmac probability. The
extract of the organism shows in Figure 3 belongs to a
Ep1Epo3Edo5Ipenergy5 agent after several steps of
learning and evolution.

Figure 3 : Organism of a Ep1Epo3Edo5Ipenergy Agent.

Transmission of classifiers from one generation to the
next generation follows two simplified models of the
genetic :

- Darwinist model : Classifiers, acquired knowledge
by individuals, isn't transmit to offspring. Only the
NHCS, in relation with the morphology of the
creature, is used to define the child capacities.

- Lamarckist model : All knowledge of parents is
transmitted to offspring. Classifiers of parents are
combined by the GA to obtain classifiers of the
new born. Two processes are used, a (λ,µ) or a
(λ+µ) reproduction, (Hoffmeister & Bäck, 1991).

The next part brings results concerning these repro-
ductions and others about the co-evolution of differently
structured classifiers in a NHCS.

4 Results
The aim of this A-Life application is the survival of
populations of autonomous agents, (Maes, 1995), in a
dynamic environment. They must adapt their behavior,

                                                
5 The class Iasocial isn't studied in this paper. For information, this
agent have the capacity to detect differences between altruists and
egoists agents. Altruists can give a part of their energy to other
agents, while egoists can't.



by learning and GA, and their structure, by macro-
evolution on their NHCS. At the beginning of a simula-
tion, agents have no knowledge, they follow the Aris-
totian principle of the tabula rasa. Then, they learn by
reinforcement according to the results of their actions.
Thought this paper focuses only on parameters linked to
macro-evolution and NHCS, several parameters are
opened to users. The GA rates are standard :

- Crossover rate = 0.20.
- Mutation rate  = 0.05.
- Selection mode is roulette wheel with stochastic

reminder and eventually elitist adjustments,
(Goldberg & Deb, 1991).

The environment evolves by adding/deleting/moving
obstacles and resources. Its size is fixed to 30*30, and it
is toroidal6. Two statistical measures are used : Mean and
standard deviation. Results are obtained by meaning ten
trials of 4.000 steps each. Simulations with a standard
deviation too high are not considered in this paper.

4.1 POPULATION VIABILITY
The first experiment consists to show the viability of
different initial populations of agents according to their
ETIC classes. Agents own, at the beginning of a simula-
tion, the class Ipenergy and one of the subclasses of Epn,
Epon and Edon7. With these combinations, one value for
n seems to be more efficient for each subclass : Ep2,
Epo3 and Edo5. The Figure 4 gives the evolution of
these populations during 4.000 steps.
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Figure 4 : Ep2, Epo3 and Edo5 agents populations.

                                                
6 Agents going out by one side, return in the world by the opposite
side.
7 With n varying from 1 to 7.

The phenomenon appearing in this figure is the same
described by Ginger Booth, (Booth, 1997) : The trophic
cascade, the inversely proportional co-evolution between
agents and resources. In the beginning of a simulation,
agents take time to learn basic behaviors, like 'feed with
a resource when it's on the same square' or 'approach a
resource if possible',  to maintain their energy level over
0. The resource quantity increases during this phase, then
when resources are large and agents more efficient, they
mate quickly and build a wide population. Resources
disappear quicker, causing the fall of agents. Only the
most adapted animats can survive this starvation, they
are few but very efficient. Finally, resources invade
again the environment and this process repeats cyclically
in a trophic cascade.

The main difference between a Lamarckist and a Dar-
winist evolution is the quickness of the population
growth. Agents have more trumps in the Lamarckist one,
they develop themselves quicker and contribute to a am-
pler trophic cascade. In a Darwinist evolution, agents
have more difficulties due to the knowledge transmission
that doesn't exist during the reproduction. But globally,
results are mor stable and an equilibrated cycle is
reached.

4.2 ECOLOGICAL NICHES
The populations showed in the Figure 4 evolve and their
agents also undergo macro-evolution on their NHCS.
From generation to the next generation, they mutate to
constitute more or less homogeneous populations. Often,
according to initial conditions, artificial species emerge
from the system and dominate the global population. The
most significant case is the emergence of the communi-
cation in the NHCSs : 90% of the final populations in-
clude agents with the class Eck. These agents appear
progressively along the evolution of species and finally
they often invade the global population.

Other kinds of combinations emerge after several
thousands steps. Generally, these agents have an efficient
co-evolution in their NHCS : Ep2Epo4EckIpenergy,
Epo3Edo7EckIpenergy, Ep1Edo7EckIpenergy. All of
these have communication abilities and an internal repre-
sentation of their energy level. The first also combines a
precise short perception of its local environment and a
medium precise oriented perception. The second has a
medium precise oriented perception and a long range
fuzzy perception. And, the third owns a very short pre-
cise non-oriented perception and a large fuzzy percep-
tion. These combinations can be found in natural ani-
mals. Most of them uses two or more sensors to detect
food, predators and other members of their specie, like
eye, ear, sonar, infrared, vibration sensors… However,
these niches are strongly dependant of the initial pa-
rameters of the environment. If the conditions are ex-
treme, very few resources and many obstacles, the
emerging niche is Ep1Ipenergy. These agents can't lost
time in communication and must take resources as soon
as they detect them. As Dave Cliff said : "In the ethology



literature, an adaptive behavior is any behavior which, if
exhibited by an animal, increase the chance that the ani-
mal will survive long enough in its ecological niche to
produce viable offspring. Underlying this definition is
the assumption that, if the animal does nothing, it will
die before it has a chance to reproduce", (Cliff, 94).
Agents belonging to emerging niches in this application
are precisely very active and they learn particular effi-
cient behaviors, individual as well as collective.

4.3 EMERGING BEHAVIORS
Three main behaviors, cf. Figure 5, appear in this appli-
cation :

- Obstacle avoidance : The agent at the right of the
figure shows how it can avoid obstacles. After
learning, it avoids obstacles to reach resources in
the quickest way.

- Obstacle following : The same agent follows ob-
stacles to get a resource hide behind them. Agents
Epn and Epon, which have a local precise visibil-
ity, develop generally this two kind of behaviors.
Edo agents, with a fuzzy perception, can't avoid
and follow obstacles, unless if they are combined
with Epn or Epon subclasses.

- Regrouping : When few resources exist in the en-
vironment, surviving agents, those at the left of
the figure, are generally more efficient. If they
perceive a resource, they try to reach it rapidly. If
many of them are on the resource in the same time
and feed together, their energy level can be suffi-
cient to become fertile. So, they reproduce and
give birth to very efficient agents. This regrouping
behavior, logic and coherent, is interesting due to
its total emergence : Nothing codes it in this ap-
plication, neither code nor classifier reinforcement
helps the appearance of this behavior.

Figure 5 : Emerging behaviors.

All of these behaviors spontaneously emerge during
most of simulations. Maybe other kinds of behaviors,
less visible but also significantly, could emerge from this
system.

4.4 PERFORMANCES WITH WOODS
MODEL

To test the validity of GA used in this application, simu-
lations based on the Woods environment, (Wilson,
1985), have been performed. The animat is modeled by a

Ep1 agent, and only its learning and evolution capacities
are kept. No macro-evolution occurs because it must stay
Ep1 during all the time of a simulation. The Figure 6
shows the acquisition time of a resource according to the
number of simulation turns. This result is based on the
mean of ten trials.
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Figure 6 : Woods simulation.

In comparison of the results obtained by Stewart Wil-
son, the convergence to an efficient classifier base runs
at the same speed. No gain is verified at short term. But,
at medium and long term, performances of Ep1 agent are
better than those found by the animat. After 8.000 turns,
the animat moves 4.5 steps to reach the resource, while
the Ep1 agent reaches the resource in 3.6 steps after
5.000 turns.

If the macro-evolution is activated in these simula-
tions, then the Ep1 agent can evolve to more complex
classes. But, as in the extreme case described in 3.2,
these niches are less adapted to this environment. In fact,
the simple Ep1 agent is very adapted to the Woods
world.

5 Conclusion and future works
The aim of this work was to prove the adaptation of
agents population using a Non-Homogeneous Classifier
System combined with a macro-evolution process. Gen-
erally, agents adapt their behavior and their structure, in
ETIC classes terms, to initial conditions of environment.
In few cases, with the most extreme values, agents can't
adapt and population dies. But with a large number of
initial values, agents find the most efficient classifiers
and the most adequate morphology. Tests show that
creatures survive better with combination of sensors al-
lowing them several perception properties. Moreover,
agents mutating and discovering communication, with a
knowledge transmission, often invade populations. Fi-
nally, several behaviors emerge totally from the system
without the intervention of a particular coding con-
straining the reinforcement of specific classifiers.

A NHCS is necessary to implement an efficient macro-
evolution process. Effectively, previously, simulations
have been performed without NHCS and classifiers con-
tained all information due to ETIC classes. So, a



Ep1Epo4Edo7 agent possesses huge classifiers with non-
separate parts Ep1 and Epo4 and Edo7. If a classifier has
an inefficient part, then this classifier isn't efficient either
if the two other parts are correct. A NHCS allows to
share the knowledge from one classifier to several classi-
fiers. The inefficient part, transformed in a complete
classifier, can be remove from the base. Moreover, the
NHCS method allows a modular development of A-Life
applications where each agent class can be implemented
progressively.

Though several A-Life systems and Multi-Agents sys-
tems obtain similar results, NHCS is a new approach
allowing co-evolution between classifiers.

Several directions can be followed for future works.
First, with the large number of parameters include in this
system, other simulations could de performed and new
behaviors or new niches could appear. Secondly, this
application also can be enriched with another kind of
object : Tools. Agent using tools would improve their
consumption of resources and these tools would lead to
the concept described in (Zannoni & Reynolds, 1997),
the cultural learning. But, the main goal is to develop an
A-Life online system integrating NHCS in artificial
creatures. This virtual laboratory would allow agents,
like the critters of Karl Sims, (Sims, 1994), to grow and
evolve in 3D real time with strong interactions with hu-
mans. Agent behaviors could be learn either by imitation
of humans or by a reinforcement/macro-evolution proc-
ess.

The final step of this work, in a very long term, is its
implementation on real artificial creatures like robots.
But, as underlined by Rodney Brooks, (Brooks, 1991),
most of efficient algorithms used in virtual creatures
doesn't run correctly for real robots. Several other pa-
rameters must be considered : Fuzzy information given
by sensors, unpredictable effects performed by effec-
tors… The adaptation of NHCS should be studied deeply
to stay efficient in real conditions !
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