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Abstract

Applying a learning classifier system to two-
class decision problems requires a special
approach to performance evaluation. This
paper presents a suite of quantitative tools that
addresses the evaluation requirements of two-
class problems.  These metrics, borrowed from
the domain of medical decision making, are
proposed as adjuncts to commonly used
evaluation methods such as crude accuracy
("percent correct").  They include sensitivity,
specificity, area under the receiver operating
characteristic curve, and predictive value.
These metrics are shown to be superior to
crude accuracy in evaluating learning
classifier system performance, especially when
applied to data with unequal numbers of
positive and negative cases.  In addition, these
metrics provide information to the researcher
that is not available from crude accuracy.
When used appropriately, these metrics
provide accurate depictions of learning
classifier system performance during training
and testing in supervised learning
environments.

1.0 INTRODUCTION

This work examines several tools for
evaluating learning classifier system (LCS)
performance on two-class decision problems in
supervised learning environments.  These tools are
commonly used in the domain of medical decision
making, where evaluation activity focuses on the
ability of clinical tests to discriminate between two
classes, usually disease or non-disease states. While
these tools are commonplace in medical decision
making, they have rarely been used in evaluating the

performance of classification systems based on
evolutionary computational approaches.  This paper
presents and discusses these tools, and proposes their
use as a comprehensive performance evaluation toolkit
by those working in evolutionary computation,
particularly in classification domains, and especially by
those working with LCS.  Although this work focuses
on two-choice decision tasks, it can be extended to
classification tasks using data with multi-categorical or
continuous classes.

Traditionally, the tools of LCS performance
evaluation have been restricted to metrics such as
“percent correct,” “error rate,” or the number of
iterations required to reach a goal.  The first two are
equivalent to crude accuracy, in that they reflect the
proportion of decisions that are correct (or incorrect).
These metrics are certainly useful and valid in many
environments.  However, when there are unequal
numbers of cases in the representative classes in
training and/or testing data, crude accuracy is a poor
estimator of system performance. The third metric,
being an indicator of LCS efficiency, is useful in terms
of local LCS performance, particularly in unsupervised
learning environments.  However, it provides no
information about the accuracy of the decisions made
by the LCS, either in training or testing.

None of these traditional metrics provide the
researcher with a priori knowledge of whether or not a
given LCS should be used in a particular environment.
Furthermore, they do not provide a means whereby one
may evaluate, a posteriori, whether or not a decision
that has been made by an LCS was, in fact accurate.  A
number of alternative tools exist for evaluating LCS
performance.  All of these tools address these two
shortcomings of traditional LCS metrics.  Some of
these tools may or may not be useful in all settings,
while others are useful only in that they provide the
foundation for other, more robust metrics.  Each of
them will be discussed in turn, as components in the



LCS Metric Toolkit.  As the components in the Toolkit
are borrowed from the domain of medical decision
science (Hennekens and Buring, 1987; Fletcher et al,
1988), they will be introduced in the context of a
simple clinical decision making example.

3.0 THE TOOLKIT

3.1  INTRODUCTION

In a two-choice decision problem, a 2x2
contingency table may be used to describe the
characteristics of a test.  The contingency table is a
confusion matrix in which the rows contain the counts
of those with a positive or negative test result; these
counts represent the decisions of the test.  The columns
contain the counts of those with a positive or negative
result using a gold standard test that is accepted as a
true indicator of disease.  An example of a gold
standard result would be one obtained through autopsy.

Test Gold standard
Positive Negative

Positive True positive False positive
Negative False negative True negative
Figure 1.  A generic 2x2 contingency table.

Figure 1 demonstrates a generic 2x2 table,
with the individual cells labeled as to the type of
result, or decision that can be made, in a two-choice
problem.  A true positive (or true negative) result is
one in which the test gives the same result as the gold
standard.  False positive (or false negative) results
represent a discordance between the test and the gold
standard; these are also called Type I and Type II
errors, respectively.  In practice, each cell contains the
counts of each type of result.  This is shown below in
Figure 2, which is an example of a 2x2 table of
diagnosis of infection, determined by a new test, and
specimen culture, a widely-accepted gold standard for
detecting infection.

New test for
infection Culture

Positive Negative
Positive 38 14
Negative 7 41

Figure 2.  A 2x2 contingency table for a hypothetical
study of a new diagnostic test for infection.

In order to determine the classification performance of
the new test, several proportional metrics can be
calculated from the 2x2 table.  Each of these provides a
different perspective on the ability of the new test to

discriminate accurately between those with and without
infection.  These metrics are crude accuracy,
sensitivity, specificity, positive and negative predictive
values, and area under the receiver operating
characteristic curve.

3.2  CRUDE ACCURACY

 Crude accuracy (CA) represents the
proportion of correct decisions over all decisions made.
It is calculated from the 2x2 table as:

decisions All

decisions negative Truedecisions positive True
accuracy Crude

+
=

Thus, from the example in Figure 2:

79.0
100

4138
accuracy Crude =

+
=

For many classification problems, CA is an appropriate
and useful performance measure.  However, in the
example shown in Figure 2, CA will overestimate the
performance of the test. This is due to the imbalance
between the number of gold standard (culture)-positive
(n=45) and gold standard-negative cases (n=55).  CA
is sensitive to the base rate of the classes; in order for
CA to be useful, it can be applied only to problems
where the number of gold standard-positive and
negative cases are equal.  Figure 3 demonstrates the
relationship between CA and base rate.  At a base rate
of 50% (where the number of gold standard-positive
cases equals the number of gold standard-negative
cases), CA is 0.70.  However, CA increases linearly
with decreasing positive base rate (smaller numbers of
gold standard-positive cases), and decreases linearly
with increasing positive base rate.  Thus, CA is an
inversely proportional function of base rate, and can
substantially over- or underestimate classification

performance of a test in environments where the base
rate deviates from 50%.
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Figure 3.  Relationship between crude accuracy and
base rate.



3.3  SENSITIVITY

Sensitivity indicates a test’s ability to classify
correctly gold standard-positive cases; as a result,
sensitivity is often referred to as the true positive rate:

 
positives standard gold All

decisions positive True
ySensitivit =

From the example in Figure 2,

84.0
45

38
ySensitivit ==

This value indicates that the new test for infection will
detect 84% of those with infection.  The remaining
16% will test negative but actually have the infection
(false negatives).  The acceptability of this value is
dependent on context; in many cases, a test with a
sensitivity of 0.84 would be considered to be very
sensitive.  However, in a disease such as cancer, where
a missed case is potentially a fatal one due to lack of
treatment, one would want the sensitivity to be closer
to 1.0.  Thus, in testing patients for cancer, one would
want a test that is highly sensitive.

Like CA, sensitivity is influenced by base rate,
with a tendency toward increased false negatives in
data where the base rate of positive examples is low.
In these data, sensitivity will correspondingly be lower
than at higher positive base rates, simply because the
proportion is based on a smaller denominator.  For
example, if there are 10 gold-standard-positives, and
five true positive decisions, the sensitivity is 0.50.
However, if there are 100 gold-standard positives and
the same number (five) of true positives, the sensitivity
is 0.95.

3.4  SPECIFICITY

Specificity, or true negative rate, measures
the ability of a test to classify correctly those without
disease:

negatives standard gold All

decisions negative True
ySpecificit =

The specificity calculated from the example in Figure 2
is :

75.0
55

41
ySpecificit ==

As is the case with sensitivity, an acceptable
value for specificity is dependent on the problem
domain.  In the example, 75% of people testing
negative with the new test will actually be negative.
The remaining 25% (false positives) will be those who
tested positive but are actually negative.  In clinical
situations where treating someone for a disease is
potentially dangerous (such as the case with certain
antibiotic therapies, which can cause severe reactions),
a test which is highly specific is very desirable.

Specificity is also influenced by base rate, but
in the opposite direction.  The proportion of negative
examples in a given data set will determine the effect
of false positive decisions.

3.5  PREDICTIVE VALUE

The positive and negative predictive values
correspond to posterior probabilities; predictive values
provide a sense for the classification performance of a
test once the results are in hand.  For example, a
patient classified as disease-positive by a test with a
high positive predictive value will likely actually have
the disease.

The positive predictive value measures the
probability of the presence of disease in a patient who
tests positive:

decisions positive All

decisions positive True
 valuepredictive Positive =

and from the example in Figure 2:

73.0
52

38
 valuepredictive Positive ==

The negative predictive value provides a
complement to the positive:

decisions negative All

decisions negative True
 valuepredictive Negative =

So that, from Figure 2:

85.0
48

41
 valuepredictive Negative ==

In the example, the new test is shown to be more useful
when negative test results are in hand; that is, 85% of
those testing negative actually do not have an infection,
while only 73% of those with a positive result do have
an infection.

Like sensitivity and specificity, the predictive
values do not reflect the simple classification
performance of the test.  And, like sensitivity and



specificity, predictive values are influenced by the base
rate.  However, predictive values are also influenced by
sensitivity and specificity.  Figure 4 shows the
relationship between sensitivity, specificity, and base
rate.  One can see from this figure that at a given base
rate, the positive predictive value depends on the
sensitivity and specificity of a test.  A highly sensitive
and specific test will have a higher positive predictive
value that one which is less sensitive and specific.  The
inverse relationship holds true for negative predictive
values.

3.6  THE RECEIVER-OPERATING
CHARACTERISTIC CURVE

3.6.1  Introduction

The ROC curve is created by plotting the true
positive rate (sensitivity) on the vertical axis against
the false positive rate (1-specificity) on the horizontal
axis. For a 2x2 table, only one point will be plotted.
Figure 5 shows the ROC curve for the example in
Figure 2.  The significance of the straight line through
the origin will be discussed below.

The ROC curve is also employed to determine

the overall usefulness of a diagnostic test.  In order to
determine whether a test is useful, it must be evaluated

for its discrimination accuracy, or its ability to classify
normal and abnormal patients.  The measure used for
this purpose is the area under the ROC curve.

3.6.2  The area under the ROC curve (θ)

While the graphical representation of the
ROC curve is of interest in determining appropriate
diagnostic cutoffs for a given test, the area under the
ROC curve (θ) is important for demonstrating the
ability of the test to classify both true positives and true
negatives, simultaneously, as a single measure.  The
area under the ROC curve has been used extensively in
medical decision making as a standard method for
evaluating diagnostic test performance (Good et al
1990; Somoza et al 1990; and many others).  In
addition, it has been proposed for use in knowledge
discovery and data mining domains (Provost and
Fawcett, 1997).

The area under the ROC curve represents the
probability of a true response in a two-alternative
forced-choice (Yes-No) task; thus, the quantity (1-area)
is the false alarm rate (Green and Swets 1966).  The
ROC curve for a test which classifies well will have a
"shoulder" closer to the upper left-hand corner of the
plot, and farther from the 45-degree diagonal (shown
in Figure 5).  This test would have a high sensitivity
and a high specificity and, as a result, a higher θ.  A
test which contains no information would plot on the
45-degree diagonal through the origin.  The area under
such a “curve” would be 0.50, indicating that the test
would discriminate only as well as a coin-flip.  A
nonparametric method based on the Wilcoxson statistic
(W) and its standard error (SEW) is regularly used in
approximating θ and its standard error, SEθ  (Hanley
and McNeil 1982).  The plausibility of calculating θ as
derived from a single point has been shown (McNichol
1972).

Software tools exist for constructing ROC
curves, calculating areas, and comparing them by
various means (Centor 1990; Metz 1993).   In addition,
the reader is referred to Hanley and McNeil (1982) and
McNeil and Hanley (1984) for a thorough description
of the algorithm for approximating the area under the
ROC curve and its standard error.

3.7  THE INDETERMINANT RATE

When evaluating the performance of any
learning system, it is essential to consider the
proportion of cases that cannot be matched by the
system (and thus cannot be classified); this proportion
is referred to as the indeterminant rate, or IR.  The IR
is calculated as:
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Figure 4.  Relationship between positive predictive
value, base rate, and sensitivity/specificity.
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Figure 5.  Single-point ROC curve for example data



Indeterminant Rate IR= =
Number of unclassifiable cases

Total number of cases to be classified

The IR should be used to refine the results obtained for
the other parameters in the toolkit, by providing an
indication of the denominator upon which these
metrics were based.  For example, it would be incorrect
to report a CA or θ without knowing the number of
classifiable observations (or denominator) on which
these metrics are based.  While CA and θ could be
interpreted in conjunction with IR as a separate
measure, it would be cumbersome to do so.  As an
alternative, single indices of accuracy and θ, corrected
for the IR, can be created as follows:

Corrected crude accuracy =  CA   corr =
Crude accuracy

1 + IR

 and

IR+1
 =   =  Corrected

θ
θθ corr

Thus, a crude accuracy of 0.95 obtained with an IR of
0.30 would yield a CAcorr   of:

73.0  
30.01

95.0
  

IR+1

accuracy Crude
  CA =

+
==corr

This example clearly shows the effect of a large IR on
an apparently high crude accuracy; applying the
correction results in a 23.2% reduction in the CA, but
the CAcorr is a more valid reflection of accuracy.   The
IR should be applied to all of the metrics in the toolkit,
so that they are comparable when evaluating different
LCS, or different trials of the same LCS.

3.8  THE TOOLKIT AND LCS RESEARCH

This work proposes that the metrics described
above can serve as a useful collection of tools for use in
evaluating LCS performance in two-choice decision
problems.  Typically, these problems will be single-step
(without long payoff chains), and implemented using a
stimulus-response LCS such as Wilson’s BOOLE
(Wilson 1987) or its descendents.  The remainder of
this paper focuses on the use of this toolkit in
evaluating the performance of such a LCS.

4.0  METHODS: AN APPLICATION OF
THE LCS METRIC TOOLKIT

4.1  EpiCS: TESTBED LEARNING CLASSIFIER
SYSTEM

An object-oriented version of NEWBOOLE
(Bonelli et al (1990), called EpiCS, was created and
used as the classifier system in this investigation.
EpiCS departed from NEWBOOLE and its
predecessor, BOOLE (Wilson 1987) on several
features: population size, algorithms for controlling
under- and over-generalization, and a methodology for
determining risk as a measure of classification.  In
addition, EpiCS provides support for the tools
described above, and uses many of them in its
graphical display.   EpiCS has been described in detail
elsewhere (Holmes 1996; Holmes 1997).

4.2  TESTBED DATA

In order to provide consistent, manipulable
data, four sham datasets consisting of 15 demographic,
medical history, and exposure variables, one outcome
variable, and 500 observations were created using the
random data generator routines supplied with the
EpiInfo (Dean et al 1990) epidemiologic analysis
software package.  These datasets represent data on
hepatocellular (liver) carcinoma in a group of
individuals.  All variables were coded dichotomously,
with 0s or 1s used to indicate the absence or presence,
respectively, or value categories, of a variable.  Each
dataset represented a different positive base rate: 0.50,
0.25, 0.15, and 0.10.

Training and testing sets were created by
randomly selecting records the dataset at a sampling
fraction of 0.50 without replacement; thus, training
and testing sets were equal in size, equal in number of
positive and negative examples, and mutually
exclusive.

4.3  TRAINING-TESTING SEQUENCE

A total of 20 trials, each consisting of a
training epoch and a testing epoch, were performed.
During the training epoch, cases were selected in
random order from the training set and presented to
the system over a total of 30,000 iterations; a single
case presentation comprised one iteration.  The system
was evaluated by calculating the metrics in the toolkit
during training, at every 100th iteration, to monitor
learning performance.  This was achieved by testing
the system with every case in the training set.  At the
conclusion of the training epoch, the system was tested



with each case in the testing set, and its classification
performance was evaluated by the metrics provided in
the toolkit.  The results reported here focus on both the
training and testing epochs of the trials.

5.0  RESULTS AND DISCUSSION

5.1  TRAINING

EpiCS supports a graphical display of the
training epoch, including textual output of the
parameters in the toolkit, as well as graphical display
of the CAcorr and θcorr. These displays are not ROC
curves; rather, each data point on the plot represents
the calculation performed at each 100th iteration (as
described above) to obtain these metrics.  Plots of the
CAcorr and θcorr obtained over the training epochs at the
four positive base rates are shown in Figures 6-9.

The most noteworthy feature of these four
figures is the progressive separation between CAcorr and
θcorr in moving to smaller positive base rates. This
clearly demonstrates the problem with using CA
(corrected or not) as a performance measure at positive
base rates less than or greater than 0.50.  If one were
using a traditional measure of convergence, such as
appearance of curve shoulder, to determine the end of a
training epoch, the epoch would be brought to a
premature end at lower positive base rates.  In addition,
CAcorr appears to provide a stable estimate of
performance; the overall shape of the plot of this

measure changes only slightly in moving from a high
to a low positive base rate.  However, CAcorr is a
deceptive measure, in that its computation is based on
total number “correct” and does not account for the two
types of error that occur in classification problems.  At
lower positive base rates, the effect of erroneous (false
negative) decisions is diluted by the large number of
gold-standard negatives which are incorporated into
the denominator in calculating CAcorr.

However, θcorr is shown to change over all
base rates; in fact, it appears to be progressively
unstable with decreasing positive base rate.  This also
is deceptive; θcorr is actually the more accurate measure
of classification performance, in that it does account
for the two types of error.  Furthermore, the
components (sensitivity and specificity) used to
construct the ROC curve, and consequently, θcorr, are
based on denominators that are similarly affected by
changes in base rate.  Because sensitivity and
specificity are equally affected by base rate, θcorr is not
itself so influenced, as it is essentially a proportion of
these two metrics.

In summary, the application of the metrics in
the toolkit during training provides a sound indication
of LCS performance during this epoch.  As a result, it
is possible to identify traditional measures of
convergence, such as curve shoulder; these measures
will be more valid, as they are based on θcorr which is
more robust than CAcorr.
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Figure 6.  Training epoch at positive base rate=0.50
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Figure 8.  Training epoch at positive base rate=0.15
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Figure 9.  Training epoch at positive base rate=0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 10000 20000 30000

Iteration

Corrected Accuracy

Corrected Area

Figure 7.  Training epoch at positive base rate=0.25



5.2  TESTING

The results obtained at testing for each base
rate are shown in Table 1.  The results are averaged
over 20 trials; numbers in parentheses represent one
standard deviation.  The progressive divergence
between CAcorr and θcorr observed during the training
epoch with smaller positive base rates is maintained at
testing.  In addition, a similar pattern is seen with
sensitivity and positive predictive value, as expected.
These patterns would be reversed, were the base rate
scheme reversed, i.e., using a gradient from 0.50. to
0.90.  The data in Table 1 clearly demonstrate the
relationship between base rate and crude accuracy, as
illustrated in Figure 3, and predictive values, as
illustrated in Figure 4.

The values of the metrics in Table 1 are useful
for interpreting the performance of EpiCS.  For
example, at positive base rate=0.50, it is clear that the
system performs quite well.  One may infer that at this
base rate, EpiCS will accurately detect both positives
and negatives; this is evident from the sensitivity and
specificity, respectively.  In addition, given a positive
(or negative) classification, one can have confidence
that EpiCS has made an accurate decision, and this is
borne out by the positive (or negative) predictive values
at this base rate.

However, at lower positive base rates, one
should lose confidence in positive classifications made
by EpiCS.  At base rates less than 0.25, the probability
that a positive decision made by EpiCS is incorrect is
as high as 0.37 (1-positive predictive value).  In
addition, the prior probability (sensitivity) at these base
rates indicates that if EpiCS were to be considered for
use on a data set with a small number of positive
examples, it would misclassify as many as 39% of
cases presented at testing.  EpiCS is very good at
accurately classifying both positive and negative cases
after training, as long as the positive base rate is at
least 0.25 and no greater than 0.75.

While the toolkit is very useful during the
training epoch, it is its application to the testing epoch
that provides the most valuable information to a user of
a LCS.  For example, a LCS may be used as rule-base
system for detecting a disease in a patient.  This
assumes that the LCS is fully trained and tested, and

that the patient represents a novel case.  The metrics
obtained during the testing epoch will provide the user
with the information needed to evaluate whether the
LCS will accurately detect positive and negative cases
(sensitivity and specificity, respectively.  Second, the
positive and negative predictive values will indicate if
the results obtained from using the LCS on the patient
are accurate for both types of decision, positive and
negative.  Finally, the θcorr provides a well-known and
recognized indicator of overall classification
performance.

6.0  CONCLUSIONS AND
RECOMMENDATIONS

This investigation examined the application of
tools commonly used in medical decision making to
evaluating LCS performance during training and
testing in supervised learning of two-choice problems.
Previously, LCS performance was commonly reported
as “percent correct” or “number of steps required to
reach a goal.”  The toolkit proposed in this paper adds
substantially to the metrics LCS researchers can use in
evaluating classification performance.  The tools are
easy to implement and interpret, while providing
robust indicators of a variety of performance
dimensions.

Although the toolkit is useful for the accurate
determination of LCS performance in two-class
problems, it will not solve the “base rate problem.”
Holmes (1998) showed that employing a differential
penalty to false positives and false negatives could
enhance learning rate in a LCS, particularly EpiCS,
there was no evidence that this improved classification
performance on testing.  However, it is possible that
“boosting,” a method for enhancing predictive
accuracy in data mining, can be employed with some
benefit.  By weighting the training cases, such that
cases with lower class prevalence would be presented
to the system more proportionally more frequently than
those with higher prevalence, an improvement in
classification performance might be realized.  Clearly,
this is an area for future investigation.

Another area needing attention is the issue of
multi-class decisions.  As the number of classes
increases in a given problem, the possibility of

Table 1.  Results at testing for each base rate.

Positive
base rate

CAcorr θcorr Sensitivity Specificity
Positive

Predictive
Value

Negative
Predictive

Value

0.50 0.95 (0.02) 0.95 (0.02) 0.96 (0.03) 0.93 (0.02) 0.93 (0.02) 0.96 (0.03)
0.25 0.92 (0.03) 0.89 (0.05) 0.84 (0.10) 0.95 (0.02) 0.85 (0.05) 0.95 (0.03)
0.15 0.90 (0.02) 0.84 (0.09) 0.76 (0.18) 0.92 (0.02) 0.63 (0.07) 0.96 (0.03)
0.10 0.92 (0.04) 0.78 (0.06) 0.61 (0.14) 0.95 (0.05) 0.64 (0.15) 0.96 (0.01)



unevenly distributed classes increases, resulting in
accuracy determinations that will be more heavily
skewed than those seen in two-decision problems.
Although not the focus of this paper, the toolkit will
address these problems as well; multi-class domains
are very frequent in medical decision making, and
these tools have a long history of application in these
domains.  For example, ROC curves are commonly
constructed from several points, each point
representing a classification category.

Finally, there is the issue of “continuous
decisions.”  When the output of a LCS is continuous,
such as a probability, the toolkit will need to include a
component to cut the output at regular intervals.  These
“cutpoints” serve the same function as the categories in
multi-class decisions, as described above.   Holmes
(1997) described this method as applied to disease risk,
which is an example of a “continuous decision.”
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