Get Real! XCS with Continuous-Valued Inputs*

Stewart W. Wilson
Prediction Dynamics
Concord, MA 01742 USA
wilson@prediction-dynamics.com

Abstract

Classifier systems have traditionally taken binary strings as inputs, yet in many real
problems such as data inference, the inputs have real components. A modified XCS
classifier system is described that learns a non-linear real-vector classification task.

1 Introduction

A classifier system is an on-line learning system that seeks to gain reinforcement from its
environment based on an evolving set of condition-action rules called classifiers. Via a Dar-
winian process, classifiers useful in gaining reinforcement are selected and propagated over
others less useful, leading to increasing system performance. The classifier system idea is
due to John Holland (1986), who laid out a comprehensive framework that included gener-
alization of classifier conditions, internal message-passing and reinforcement, and computa-
tional completeness. For a number of years, the idea has inspired many. A “population” of
hypotheses, generated plausibly but with a random ingredient from other hypotheses and
subject to confirmation by the environment, intuitively corresponds to our own mental ex-
perience, and indeed suggests a cognitive model. Classifiers that read input detectors and
respond by posting messages seem to bridge the gap between physical stimuli and concepts.
Generalization by classifiers to cover related input situations seems to correspond to the
formation of rudimentary perceptions. The extension to learning and thinking of variation
and selection—successful and ubiquitous elsewhere in life—seems natural and deserving of
extensive investigation.

While its genes were promising, the evolution of the classifier system idea has not been
rapid. As a complex adaptive system that also needed to be successful against a relatively
independent environment, learning classifier systems (LCS) were found not to work well
“out of the box”. Instead, progress has come via simplifications of LCS structure, controlled
experiments with environments that tested individual aspects of the system, and, of course,
changes in the original spec. Among the problems encountered were performance better

*From Festschrift in Honor of John H. Holland, May 15-18, 1999, L. Booker, S. Forrest, M. Mitchell, and
R. Riolo (eds.). Center for the Study of Complex Systems, The University of Michigan, Ann Arbor, MI.



than random but rarely reaching optimality, difficulty coupling sequential messages, and
inaccurate generalization. One result of this uncertain workability is that an LCS is rarely
the technique of choice in practical applications.

Yet applicability in at least one area—inference from data—may in fact be great. Data
inference is classification, which LCSs are for! A classifier system—inherently non-linear—
should be able to find non-linear categories in complex data. And because it consists of
discrete rules, an LCS has the virtue, compared with other techniques such as networks
and nearest-neighboring, of exhibiting its results with a transparency that permits human
comprehension. Finally, compared with other techniques, classifier systems, because they
evolve general rules, should be able to learn at a complexity cost proportional to the target
concept and not the underlying input space.

XCS (Wilson 1995, 1998, 1999) is a new kind of LCS that reaches optimal performance
on quite difficult problems and finds accurate maximal generalizations. Its applicability
to data inference tasks is supported by good results with XCS on the Monk’s Problems
(Saxon and Barry 1999), adaptation of LCSs to risk-of-outcome analysis (Holmes 1998),
demonstration of generalized (s-expression) conditions in XCS (Lanzi and Perrucci 1999),
and demonstration of noise rejection by XCS (Lanzi and Colombetti 1999). One area that
has not received attention, but is important in data inference, is classification of input vectors
having real-valued components.

Continuous variables such as temperature, concentration, or age may be decisive in clas-
sification, with certain ranges of the variables implying one class and other ranges implying
another. LCSs traditionally have taken binary (bitstring) inputs. Sometimes a binary vari-
able is taken to represent a pre-thresholded continuous one, but then the thresholding has not
been done adaptively. In a version of XCS taking real inputs—call it “XCSR”—optimally
decisive thresholds should be found automatically. Fuzzy classifier systems (Bonarini 1996)—
LCSs with rules based on fuzzy logic—take real inputs and generate discrete or continuous
outputs. Most fuzzy systems, however, do not adapt their membership functions, though
this may, and should, change eventually. Just the same, it is desirable to try to develop
XCSR, which if it works will have the advantages of XCS and avoid the addition of fuzzy
techniques.

This paper reports two first experiments with XCSR. The results are interesting, and the
real domain is found to introduce issues new to LCSs. The next section explains the test
problem used, the “real multiplexer”. XCSR is introduced in the following section, first by
explaining how it differs from XCS, and then briefly reviewing the elements that remain the
same. The two experiments are then presented, followed by discussion and conclusion.

2 Test Problem

To test XCSR, we wanted a non-linear classification problem for real vectors. As a sim-
plification, it was assumed that in the input vector x = (z, ..., z,), each component z; is
restricted to the range 0.0 < z; < 1.0. If in an actual problem the data ranges are known
in advance, such scaling implies no loss of generality. If not, XCSR may still be capable
of adapting to the actual ranges, but this has not been investigated as yet. We also as-
sumed the vector was to be classified into one of just two classes, 0 or 1, e.g., healthy (0) or



diseased (1), as might occur in epidemiological inference. Finally, it was assumed that the
class value depended on whether or not certain input variables were in certain ranges, e.g.,
(0.12 <25 < 0.38) A (0.31 < x4 < 1.0) = class 1.

Given these assumptions, our test problem was an adaptation to real values of the rel-
atively well-known Boolean 6-multiplexer problem. This provided a non-linear two-class
task of moderate difficulty, and the results could be compared with previous results on the
Boolean version.

The Boolean 6-multiplexer function takes as input a six-bit string and outputs a truth
value, 1 or 0. One way to get the output is to consider the two leftmost string bits as
an unsigned binary number addressing one of the four remaining bits. Thus in the string
011010, the first two bits “01” address bit number 1 of the remaining bits. The value of that
bit is 0, which becomes the function value. Alternatively, in disjunctive normal form, the
function is given by Fg = bjyb by + byb1 b3 + by} by + bob1 b5, where the subscripts index the bits
left to right and primes denote negation.

To define the corresponding “real 6-multiplexer” (RFg), assume we are given a real vector
x = (g, ...,x5) in which 0.0 < z; < 1.0. Then for thresholds 0.0 < 6; < 1.0, interpret x; as
0 if x; < 6;, else 1. The value of RFj is then the value of Fg applied to the bitstring that
results from these interpretations. Given random vectors z, XCSR is supposed to learn to
return the value of RFg. XCSR has of course no prior knowledge of Fg nor of the thresholds,
01;.

Note that in the earlier broad problem statement, it was assumed that classification would
depend on variables being in certain ranges. In RFj, the dependence is on variables being
above or below thresholds, and this is not as general. Testing on ranges—and on negations
of ranges, or disconnected ranges—awaits further research. However, as will be seen next,
XCSR is at present designed for connected ranges and could presumably be extended.

3 XCSR

3.1 Changes from XCS

XCSR differs from XCS only at the input interface, in its mutation operator, and in the
details of covering. The differences arise solely from changing the classifier condition from
a string from {0,1,#} to a concatenation of “interval predicates”, int; = (c¢;, s;), where ¢;
and s; are reals. To address RFg, XCSR uses classifiers whose conditions have six interval
predicates. A classifier matches an input x if and only if ¢; — s, < z; < ¢; + s;, for all z;.
Thus ¢; can be thought of as the center value of int;, and s;, termed “spread”, is a delta
defined with respect to ¢;. A consequence of using interval predicates is that the number of
numerical values or alleles in the condition is twice the number of components in x.

Crossover operates in direct analogy to crossover in XCS. The crossover point can occur
between any two alleles, i.e., it can occur within an interval predicate as well as between
predicates. Mutation, however, is different. Several preliminary experiments were done, and
the best method appears to be to mutate an allele by adding an amount +rand(m), where
m is 0.1, rand picks a value uniform randomly from [0, ), and the sign is chosen uniform
randomly. The result is mutation by a scaled random increment.



“Covering” occurs when no existing classifier matches x. In both XCS and XCSR a
new classifier is created which does match. In XCSR the new condition has components
(co, S0, -, C5, S5), Where ¢; = x; and s; = rand(sg), with s a constant such as 0.5. In XCSR,
as in recent versions of XCS, a covering classifier (with separately generated condition) is
created for each possible action. If the population of classifiers has reached its allowable
maximum, deletion of classifiers occurs to make room for the new ones (deletion is generally
not necessary; initial populations are empty and covering normally occurs only at the very
beginning of a run).

3.2 Common features of XCSR and XCS

The following is an abbreviated description of XCS (see Wilson (1995, 1998) and Kovacs
(1997a) for more detail). XCS is designed for both single- and multiple-step tasks, but this
description will apply only to XCS for independent single-step tasks in which an input is
presented, the system makes a decision, and the environment provides some reward. All
material in this section applies equally to XCSR.

Each classifier C; in the population [P] has three principal parameters: (1) payoff pre-
diction p;, which estimates the payoff the system will receive if C; matches and its action is
chosen by the system; (2) prediction error €;, which estimates the error in p; with respect
to actual payoffs received; and (3) fitness Fj, computed as later explained. It is conve-
nient to divide the description of a single operating cycle or time-step into the traditional
performance, update (reinforcement), and discovery components.

3.2.1 Performance

Upon presentation of an input, XCS forms a match set [M] of classifiers whose conditions
are satisfied by the input. If no classifiers match, covering takes place as described earlier.
Then for each action ay represented in [M], the system computes a fitness-weighted average
Py, of the predictions p; of each classifier in [M] having that action: P, = 32, Fjp;/ 3°; Fj. P
is termed the system prediction for action k.

Next, XCS chooses an action from those represented in [M]| and sends it to the environ-
ment. According to the action-selection regime in force, the action may be picked randomly
or otherwise probabilistically based on the Py, or it may be picked deterministically—i.e.,
the action with the highest P is chosen. Finally, an action set [A] is formed consisting of
the subset of [M] having the chosen action.

3.2.2 Update

In this component, the parameters of the classifiers in [A] are re-estimated according to the
reward R returned by the environment as a consequence of the system’s taking action ay.
First, the predictions are updated: p; < p;+5(R—p;). Next, the errors: ¢; < ¢;+5(|R—p,|).
Third, for each C}, an accuracy k; is computed: k; = 0.1(¢;/€) ™", for €; > €, else 1.0. Then,
from the k;, each classifier’s relative accuracy /-c;- is computed: /1;- = k;j/ 2 k;. Finally the
fitnesses F; are updated according to: F; < Fy + B(k} — Fj).



3.2.3 Discovery

On some time-steps, XCS executes a genetic algorithm within [A]. Two classifiers are chosen
probabilistically based on their fitnesses and copied. The copies are crossed (two-point
crossover) with probability x, and then mutated with probability p per allele. The resulting
offspring are inserted into [P]; if the population size is already at its maximum value, N, two
classifiers are deleted. The probability of deletion of a classifier is determined by Kovacs’s
(1997b) method and is designed to preferentially remove low-fitness classifiers that have
participated in a threshold number of action sets—that is, have had sufficient time for their
parameters to be accurately estimated.

Whether or not to execute the GA on a given time-step is determined as follows. The
system keeps a count of the number of time-steps since the beginning of a run. Every time a
GA occurs, the classifiers in that [A] are “time-stamped” with the current count. Whenever
an [A] is formed, the time-stamp values of its members are averaged and subtracted from
the current count; if the difference exceeds a threshold 654, a GA takes place.

A macroclassifier technique is used to speed processing and provide a more perspicuous
view of population contents. Whenever a new classifier is generated by the GA (or covering),
[P] is scanned to see if there already exists a classifier with the same condition and action.
If so, the numerosity parameter of the existing classifier is incremented by one, and the new
classifier is discarded. If not, the new classifier is inserted into [P]. The resulting population
consists entirely of structurally unique classifiers, each with numerosity > 1. If a classifier
is chosen for deletion, its numerosity is decremented by 1, unless the result would be 0, in
which case the classifier is removed from [P]. All operations in a population of macroclassifiers
are carried out as though the population consisted of conventional classifiers; that is, the
numerosity is taken into account. In a macroclassifier population, the sum of numerosities
equals N, the traditional population size. [P]’s actual size in macroclassifiers, M, is of
interest as a measure of the population’s space complexity.

4 Experiments

In each of the following experiments, random real vectors, with components 0.0 < z; < 1.0,
were formed and presented to XCSR. Each such presentation was termed a problem. The
action-selection regime consisted of explore problems which occurred with probability 0.5,
and test problems the rest of the time. On an explore problem, XCSR chose its action uniform
randomly from among those in [M], and update and discovery operations were carried out as
previously described. Test problems were designed to determine how well the system could
do if it chose its action deterministically. The measure of system performance was a moving
average of the fraction of correct actions (correct values of RFj) on the previous 50 test
problems. Also measured was a similar moving average of |R — Py| (with Py the prediction
for the chosen action), termed system error. On test problems, the update and discovery
components were disabled.

In the experiments, R = 1000 for the correct action, 0 otherwise. XCSR parameters were
as follows: N = 800, 8 = 0.2, ¢¢ = 10, n = 5, O0ga = 12, x = 0.8, u = 0.04, m = 0.1,
so = 1.0. Other values of N, 654, x, #, m and sy were tried in Experiment 1; from this



Fraction correct ——

0.8 System error/1000 - |
0.6 _
04| |
0.2 | N ]

0 5000 10000 15000 20000

Explore problems

Figure 1: Fraction correct (solid line) and system error/1000 (dashed) vs. number of explore
problems in Experiment 1.

limited evaluation, the values given appeared to be best and were used in both experiments.

4.1 Experiment 1

The aim of this experiment was to imitate, as closely as possible, the Boolean 6-multiplexer
task, except that the input would be real. In the Boolean task as traditionally conducted,
both outcome cases (1 and 0) are equally probable, as are all input bitstrings. An equivalent
regime can be obtained in the real case by setting all thresholds 6; at 0.5, since the underlying
real vectors are uniform randomly generated. These were the thresholds in Experiment 1.
Figure 1 shows performance and system error averaged over five runs each consisting of 20,000
explore problems. Performance reaches its maximum—approximately 98%—at about 15,000
problems. System error reaches a minimum at a similar point. Compared with typical results
on the Boolean 6-multiplexer, arrival at high performance is substantially slower. Recent
experiments with XCS on Fg get to 100% performance in about 1,500 problems, so there is
a factor of difference of about ten.

Two sources for the difference come to mind. One is simply the fact that on RFg, XCSR'’s
classifiers have 12 alleles in their conditions vs. six for XCS on Fg; thus the search space has
higher dimensionality. Experiments with XCS on the 11-multiplexer (Wilson 1998)—which
requires 11 alleles in the condition—took about 10,000 problems to reach 100% performance.
A second possible source of difference is that whereas each Boolean dimension has just two
allele values, each dimension in the real case has in principle indefinitely many values.

Of course the effective resolution of a real dimension depends on the quality of per-
formance desired. High performance can only be reached if the system accurately esti-
mates the thresholds, and this will take longer compared with the Boolean case, where the
“thresholds” —in effect, choosing between 0 and 1 in the condition—are in a sense maximally



ACT PRED ERR FITN NUM

0. |oooooocooq]..... 00000|0000000000]..... 0000010000000000/00000000..] 1 0. .000 14. 1

1. |..... 00000/ ..... 00000/00000000001000000000010000000000/00000. .. .. | 1 0. .000 B3. 2

2. |..... o0000]..... o0000|0000000000] .. ... 00000]0000000000|00000. . ... | 1 0. .000 40. 1

3. ... o0000]..... 00000/00000000001000000000010000000000/00000..... | 1 0. .000 50. 1

4. |..... o0000]..... 00000|0000000000|0000000000]0000000000|00000..... | 1 0. .000 50. 1

5. |..... 00000/ ..... 00000/000000000010000000000/0000000000/00000. .. .. | 1 0. .000 140. 3

6. |..... 00000/000000. .../0000000000/0000000000100000..... |00000000001 1 34. .081 5. 2

7. |....000000]..... 00000|0000000000|0000000. . . 10000000000 000C0. .. .. | 1 0. .000 56. 2

8. |..... o0000]..... 00000/00000000001 . ...000000/0000000000/00000..... | 1 0. .000 41. 1

9. |....o00000]..... 00000|0000000000] ..... 00000|0000000000|00000..... | 1 0. .000 B58. 1

10. |..... o0000]..... 00000|0000000000] . .... 00000]0000000000|00000.. ... | 1 0. .000 46. 1

11, |..... o0000]..... 00000|0000000000] . ...000000|0000000000(|00000. .. .. | 1 0. .000 85. 2

12, |..... o0000]..... 00000|0000000000] ..... 0000010000000000/00000..... | 1 0. .000 43. 1
ACT PRED ERR FITN NUM

0. |.572,.985].924,.393].322,0.99(.948, .417| .818,.812].331,.404]| 1 0. .000 14. 1

1. 1.786,.264|0.89,.3641.602,0.9910.23,.884].796,.769].228,.268| 1 0. .000 5B3. 2

2. 1.794,.26410.89,.364|.262,0.99].868, .344| .665,.769].228,.268| 1 0. .000 40. 1

3. |.794,.264].807,.262|.602,0.99]|0.23,.884].796,.769|.228,.268| 1 0. .000 50. 1

4. |.794,0.28].807,.262|.684,0.99|0.23,.884|.717,.769|.228,.268| 1 0. .000 50. 1

5. |.794,.264|.807,.262|.602,0.99]0.23,.884].717,.769|.228,.268| 1 0. .000 140. 3

6. |.743,.232].172,.404|.813,.903]0.41,.841].092,.366|.506,.658| 1 34. .081 5. 2

7. 1.775,.332].807,.262| .476,.6871.275, .344].716, .8741.205,.233] 1 0. .000 56. 2

8. |.786,.264].807,.262|.288,0.99].818,.322].717,.783].181,.269] 1 0. .000 41. 1

9. |.798,.357(0.89,.364|.247,0.99]|.894, .344] .665, .732| .207,.233| 1 0. .000 58. 1

10. 1.798,.26410.89,.364|.247,0.99].894, .344]| .665,.732].207,.269| 1 0. .000 46. 1

11. 1.798,.264]1.807,.262|.288,0.99].818,.322|.717,.783].207,.269| 1 0. .000 85. 2

12. ].798,.264].807,.262|.288, 1.0]|.818,.274|.717,.783|.207,.269]| 1 0. .000 43. 1

Figure 2: An action set [A] from Experiment 1. Upper half: condition predicates shown

graphically (see text). Lower half: actual c and s values of predicates. Also shown: ACTion,
PREDiction, ERRor, FITNess, and NUMerosity of each classifier.

coarse. However, the proper analysis of search time vs. resolution is not clear.

In the Boolean case, performance reaches a solid 100%, whereas here it does not, with
the level reached depending on the mutation rate and technique. Preliminary experiments
included mutation based on +m instead of +rand(m). This did not produce as good maxi-
mum performance, for any mutation rate. The random function, by introducing arbitrarily
small mutation increments, probably contributes to a closer ultimate approach to 100%.

It is interesting to examine some classifiers evolved by XCSR. Figure 2 shows an action
set. In the first part of the figure, the classifiers are represented using a crude graphic
notation. The unit interval is divided into 10 equal parts. If a part contains “.”, no value in
that part is accepted by the predicate; if it contains “0”, some values are; and if it contains
“0” all values are accepted. Thus “.....00000” is an interval predicate accepting inputs greater
than some value between 0.5 and 0.6 and less than 1.0. The lower half of the figure shows
the same classifiers but with the predicates notated directly with their ¢ and s values. Also
included in the figure, following the classifiers, are their action, prediction, error, fitness, and
numerosity values. The error and fitness values are scaled. Error is shown as €;/1000, fitness
as 1000Fj.

Notice how the system has “sculpted” the predicates and is in effect finding the thresholds.
Most predicates either show ranges between 0.0 and 0.5, 0.5 and 1.0, or are “don’t cares”
i.e., “0000000000”. In Boolean terms, most of the classifiers could be said to have the form



Fraction correct — |

0.8 System error/1000 -
0.6 _
04| -
0.2 t M‘v’\ | ]
; | I“V o I,~ T
0 5000 10000 15000 20000

Explore problems

Figure 3: Fraction correct (solid line) and system error/1000 (dashed) vs. number of explore
problems in Experiment 2.

11#14#1 : 1 = 0 or 11##+#1 : 1 = 0 (the bit before the arrow is the action, that after
the arrow is the prediction). The latter classifier is more general than the former, while still
as accurate, and it is likely eventually to drive the former out (see Wilson (1995, 1998) or
Kovacs (1997a) for a discussion of accurate generalization).

In the lower half of Figure 2, using the raw ¢ and s values, we can see that the effective
thresholds are not quite 0.5, which must account for a good part of the system’s residual
error. Also interesting is that the number of unique ¢ and s values is relatively small, with
the diversity among the classifiers caused mainly by different combinations of those values,
i.e., by crossover. While it might be predicted that mutation of real values, especially using
rand(m), would make every predicate different in detail, this is not particularly the case.

4.2 Experiment 2

This experiment was like Experiment 1 except that the interpretation thresholds were 0.25,
0.75, 0.25, 0.75, 0.25, and 0.75. In actual data inference problems, the relevant data ranges
or thresholds are not only unknown but are in general different from each other. Experiment
2 was designed to model this situation, if somewhat simplistically. The new thresholds do
not affect the relative prevalence of the two outcome cases: they are still equally probable,
which is generally unlike real-world data sets. In contrast to Experiment 1, however, some
inputs in Experiment 2 are much more likely than others. For example, an input whose
Boolean interpretation is 010101 has probability (1/4)%, while an input with interpretation
101010 has probability (3/4)°, a ratio of 3° = 729. Thus input frequencies in Experiment 2
were highly variable.

Figure 3 shows the performance and error results. The maximum performance—about
93%—is noticeably lower than in Experiment 1, although it is reached sooner. System error



ACT PRED ERR FITN NUM

0. |.o00000000]....... 000|0000000000| 0000000000 0000000C0OQ]....... o0o| 1 1000. .000 11. 1
1. |..o0000000]....... 0000000000000/ 0000000000100000000G0] . ...... o0o| 1 1000. .000  11. 1
2. |.o00000000]....... 000|0000000000|0000000000|00000000C0] . ...... o0o| 1 667. .278 19. 2
3. |..o0000000]....... 0000000000000 0000000000100000000C0] .. ..... o00| 1 1000. .000 16. 1
4. |..o0000000]....... 000|0000000000| 0000000000 0000000C0OQ]....... o00] 1 1000. .000 16. 1
5. |..o0000000]....... 0000000000000 00000000001000000000C0] . ...... o0o| 1 1000. .000 207. 1
6. |..00000000]....... 0000000000000/ 00000000001000000000C0] .. ..... 000l 1 1000. .000  26. 1
7. lo0O0OOOCOQO]....... 0000000000000/ 0000000000 100000000C0] .. ..... o000l 1 738. .262 19. 1
8. |o0000000QO]....... 0000000000000 0000000000100000000C0] .. ..... o000l 1 654. .386 11. 2
9. |..o0000000]....... 000|0000000000| 0000000000 0000000COQ]....... o00] 1 1000. .000  32. 1
10. |o000000000]....... 0000000000000 0000000000|00000000C0] . ...... o0o| 1 751. .353 0. 1
11. |..o0000000]........ 00/0000000000| 0000000000 0000000000 .. ..... o00|] 1 1000. .000  31. 1
12. |..o0000000]....... 0000000000000 0000000000100000000C0] .. ..... o000l 1 1000. .000  33. 1
13. |..o00000000]....... 000|0000000000| 0000000000 0000000COQ]....... o00] 1 1000. .000  37. 1
14. |..o0000000]....... 0000000000000/ 0000000000100000000C0] . ...... o00| 1 1000. .000  33. 1
15. |..o00000000]....... 0000000000000/ 00000000001000000000C0] .. ..... 000l 1 1000. .000  33. 1
16. |..o0000000]....... 000|0000000000| 0000000000 0000000COQ] ... .... o00] 1 1000. .000 29. 1
17. |..o0000000]....... 0000000000000 0000000000100000000C0] .. ..... o00| 1 1000. .000  99. 3
18. |..o00000000]....... 000|0000000000| 0000000000 0000000COQ]....... o00] 1 1000. .000 154. 6
19. |..o0000000]....... 0000000000000 0000000000|00000000C0] . ...... o00| 1 1000. .000  34. 1

Figure 4: An action set [A] from Experiment 2. Same notation as upper half of Figure 2.

is greater than in Experiment 1. At present, we do not understand these differences, although
the fact that many input interpretations are much less likely than other interpretations may
be responsible. In 20,000 problems, the system sees some interpretations many fewer times
than others—in fact, fewer times than any interpretation in Experiment 1.

Figure 4 shows an action set from late in one run of Experiment 2. The Boolean inter-
pretation of the classifiers is 11###1 : 1 = 1000. It is clear that in most of the classifiers
XCSR has “detected” and represented the 0.25 and 0.75 thresholds quite accurately. One
can also see that the four classifiers with non-zero error have first predicates that are a little
too large.

5 Discussion

Work on XCSR can be taken in several directions. It is easy to suspect that the relative
crudeness of the present mutation technique may account for the failure to reach higher
performance levels, especially in Experiment 2 where smaller interval predicates were needed.
As performance closes in on its maximum, smaller and smaller mutation increments are called
for, yet in these experiments there was no such adaptation. It is possible that adapting the
increment along lines used in the Evolutionsstrategie (Rechenberg 1994) may be appropriate.
Adaptation may also increase the rate of learning, because larger mutation increments could
presumably be used at the beginning of a run.

The present test tasks—derived from a Boolean problem—while relatively complex and
non-linear, are in many respects not representative of actual data inference problems. There,
it is often the case that only a few out of many input variables are relevant to the decision,
and the challenge is to identify them in the presence of noise and data contradiction. For
this, the noise filtering techniques of Lanzi and Colombetti (1999) may be helpful. In ad-
dition, the assumption in this paper of equally probable outcomes is often violated by real



data, where the prevalences are likely to be skewed. This can be investigated by adapting
XCSR (and XCS) to keep the “four-way” statistics characteristic of fields like epidemiology
(i.e., {true, false} x {positive, negative} instead of machine learning’s correct/incorrect).
Experiments along these lines are under way.

A large step, obviously required if XCSR and XCS are to participate in practical data
inference, is to test the systems in regimes where training is done on one data set and
testing occurs on another—both sets often being drawn from a single larger set. Such
training/testing regimes are standard in data inference. It is vital for XCS-like systems to
meet the challenge of training sets that sample the environment incompletely.

6 Conclusion

This paper has demonstrated that XCSR—and thus classifier systems—can learn to classify
real-vector inputs and form accurate maximal generalizations over them. The results are
another step toward full realization of the promise of Holland’s classifier system idea.

7 References

Bonarini, A., (1996). Evolutionary learning of fuzzy rules: competition and cooperation. In
Fuzzy Modelling: Paradigms and Practice, W. Pedrycz (ed.), 265-284. Norwell, MA: Kluwer
Academic Press.

Holland, J. H. (1986). Escaping brittleness: the possibilities of general-purpose learning
algorithms applied to parallel rule-based systems. In R. S. Michalski, J. G. Carbonell &
T. M. Mitchell (Eds.), Machine learning, an artificial intelligence approach. Volume II. Los
Altos, California: Morgan Kaufmann.

Holmes, J. H. (1998). Discovering risk of disease with a learning classifier system. In
T. Baeck, ed., Proceedings of the Seventh International Conference on Genetic Algorithms
(ICGA97). Morgan Kaufmann, San Francisco, CA., 426-433.

Kovacs, T. (1997a). XCS classifier system reliably evolves accurate, complete, and min-
imal representations for Boolean functions. In Roy, Chawdhry and Pant (Eds), Soft Com-
puting in Engineering Design and Manufacturing (WSC2). Springer-Verlag, London.

Kovacs, T. (1997b). Steady state genetic algorithm deletion techniques. Internal Report,
School of Computer Science, University of Birmingham.

Lanzi, P. L. and Colombetti, M. (1999). An extension to the XCS classifier system for
stochastic environments. In Proceedings of The 1999 Genetic and Evolutionary Computation
Conference (GECCO-99), W. Banzhaf (ed.)

Lanzi, P. L. and Perrucci, A. (1999). Extending the representation of classifier condi-
tions, part II: from messy coding to s-expressions. In Proceedings of The 1999 Genetic and
Evolutionary Computation Conference (GECCO-99), W. Banzhaf (ed.)

Rechenberg, 1. (1994). Ewolutionsstrategie '94. Stuttgart-Bad Cannstatt: Frommann-
Holzboog.

Saxon, S, and Barry A. (1999). XCS and the Monk’s Problem. Second International
Workshop on Learning Classifier Systems (IWLCS-99), Orlando, FL, USA, July 13, 1999.

10



Wilson, S. W. (1994). ZCS: a zeroth level classifier system. Ewvolutionary Computation
2(1): 1-18.

Wilson, S. W. (1995). Classifier fitness based on accuracy. FEwvolutionary Computation
3(2): 149-175.

Wilson, S. W. (1998). Generalization in the XCS classifier system. In Proceedings of the
Third Annual Genetic Programming Conference, J. Koza et al (eds.). San Francisco, CA:
Morgan Kaufmann, 665-674.

Wilson, S. W. (1999). State of XCS classifier system research. Second International
Workshop on Learning Classifier Systems (IWLCS-99), Orlando, FL, USA, July 13, 1999.

11



