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Abstract 

XCS is a new kind of learning classifier sys-
tem that differs from the traditional one pri-
marily in its definition of classifier fitness 
and its relation to contemporary reinforce-
ment learning.  Advantages of XCS include 
improved performance and an ability to 
form accurate maximal generalizations.  
This paper reviews recent research on XCS 
with respect to representation, predictive 
modeling, internal state, noise, and underly-
ing theory and technique.  A notation for 
environmental regularities is introduced. 

1 INTRODUCTION 

A classifier system is a learning system that seeks to 
gain reinforcement from its environment based on 
an evolving set of condition-action rules called clas-
sifiers.  Via a Darwinian process, classifiers useful in 
gaining reinforcement are selected and propagate 
over those less useful, leading to increasing system 
performance.  The classifier system idea is due to 
Holland (1986), who laid out a framework that in-
cluded generalizability of classifier conditions, inter-
nal message-passing and reinforcement, and compu-
tational completeness.  However, despite consider-
able research, the performance of the traditional sys-
tem has been mixed, and there have been few ad-
vances on the initial theory. 

Recently, Wilson (1995) introduced XCS, a classifier 
system that retains essential aspects of Holland’s 
model, while improving on it in some respects.  
XCS’s definition of classifier fitness is different from 
the traditional one, and the system’s organization 
includes ideas from the contemporary field of rein-
forcement learning (Sutton & Barto, 1998).  Due to 
the fitness changewhich is theoretically 

basedXCS tends to evolve classifiers that are both 
accurate in their prediction of payoff and maximally 
general, resulting in higher performance as well as 
compactness of representation.  The traditional 
model provides no theory as to how generalization 
would occur accurately, and in fact it does not.  
Theoretical understanding of XCS’s performance, 
particularly the use of predictions and discounting,  
is aided by the reinforcement learning (RL) connec-
tion.   Theoretical understanding of performance in 
the traditional model is limited. 

XCS has been investigated on problems including 
learning the Boolean multiplexer functions, and to 
find goals in grid-like ‘‘woods’’ and maze environ-
ments.  XCS reaches optimal performance in these 
problems, which are generally more difficult than 
problems set for the traditional system, where per-
formance is rarely optimal. 

Because XCS appears both theoretically and practi-
cally to be a clear advance, and also because these 
developments have come rather quickly, it is desir-
able to attempt a review of the current state of XCS 
research (though some good work, unknown to the 
author, may unfortunately be left out).  The follow-
ing discussion assumes a familiarity with classifier 
systems, as well as acquaintance with the basics of 
XCS (Wilson 1995). The material is organized under 
five topics: representation, predictive modeling, in-
ternal state, noise and uncertainty, and XCS theory 
and technique. First, though, it will be useful to in-
troduce some simple notation to describe classifier 
system environments. 

2 ENVIRONMENT NOTATION 

A classifier system acts to gain payoff in its environ-
ment.  Say that x represents a particular environ-
mental state as detected by the system’s sensors at 
time t and that a represents an action the system is 



capable of taking in that state.  Let p represent an 
amount of payoff.  Then the notation (x,a) → p says 
that if the system takes action a in state x, payoff p 
will be received.  The expression states what we may 
term a predictive regularity of the environment. 

With some further notation, we can represent the 
totality of predictive regularities.  Let X stand for the 
set of all environmental states (as read from its sen-
sors) that the system will encounter, let A represent 
its set of available actions, and let P represent the set 
of possible payoffs.  Then there is a mapping X x A ⇒ 
P from the product set of states and actions to the set 
of payoffs, that expresses the totality of predictive 
regularities in the system’s environment.  The map-
ping can also be regarded as representing the 
system’s payoff landscape, since it associates a value 
from P with every point in the space of sensor vari-
ables and actions defined by the X x A product set.  
(Not all points in the space may be realizable by the 
system). 

Suppose that, for a given action a and payoff p, more 
than one state x satisfies (x,a) → p.  Let us write 
({x},a) → p to express all such states compactly. We 
term the expression ({x},a) → p  a categorical regular-
ity.  It describes a maximal set of states which are 
equivalent in the sense that they all satisfy (x,a) → p 
for a given value of a and a given value of p. 

We can now look at the payoff landscape X x A ⇒ P 
from a categorical perspective.  In general, the land-
scape will not be indefinitely ‘‘irregular’’.  Instead, it 
will contain regions ({x},a) over which the value of p 
is constant, or nearly so.  Each such region is a cat-
egorical regularity.  The points within the region are 
equivalent with respect to payoff. 

To summarize, a predictive regularity says that ac-
tion a in state x leads reliably to payoff p.  A cat-
egorical regularity says that, given a, there may be 
many states x which result in the same p. 

Note, as an important aside, that often the payoff 
from the environment is zero for most pairs (x,a).  
This is the case in environments where the system 
must perform a sequence of actions in order to ar-
rive in a state where payoff can be obtained.  Thus, 
much of the time, the system must ‘‘find its way’’ 
without benefit of payoff directly from the environ-
ment, i.e., without so-called external payoff or reward.  
To deal with this situation, Holland proposed the 
bucket brigade algorithm, in which external payoff is 
in effect passed back from each activated classifier to 
its predecessor.  The bucket brigade was in fact the 

first local reinforcement technique for learning in 
sequential environments. 

The technique used in XCS is similar in some re-
spects, but is closer conceptually and algorithmically 
to Q-learning (Watkins 1989), a theoretically 
grounded and widely used technique in contempo-
rary reinforcement learning. The result is that XCS 
exists in an environment where the payoff for each 
(x,a) is a combination of external payoff (if there is 
any) and the system’s current estimate of the maxi-
mum payoff available in the succeeding state y.  
Thus the payoff environment for XCS is a combina-
tion of payoffs from the ‘‘true’’ external environ-
ment and an internal estimation process modeled 
after Q-learning.  With this qualification, we shall 
continue to characterize the environment by the 
mapping X x A ⇒ P, at least until the next qualifica-
tion! 

3 REPRESENTATION 

In general, the objective of XCS is to capture, in the 
form of classifiers, the predictive regularities of the 
environment, E, so the system can attain payoff at 
optimal rates.  A second objective is to evolve a clas-
sifier population that captures E’s categorical regu-
larities compactly and accurately.  In principle, com-
pactness of representation can occur because the 
classifier syntax permits the formation of generaliza-
tions, classifiers whose conditions match more than 
one state.  In the traditional syntax, where the condi-
tion is a string from {1,0,#}, a condition can match 
more than one state if it contains #’s. 

Ideally, for each categorical regularity ({x},a) → p in 
E, the system should evolve a classifier 
<condition>:<action> ⇒ <prediction> in which the ac-
tion and prediction are a and p, respectively, and the 
condition exactly corresponds to {x}; that is, all and 
only the states in {x} are matched by the condition.  
Put another way, the generalization expressed by 
the classifier should correspond exactly to the cat-
egorical regularity.  Evolving such classifiers is im-
portant because it minimizes population size in 
terms of distinct classifiers (or macroclassifierssee 
Section 7.4), resulting in rapid matching and vis-
ibility of the system’s knowledge to human beings.  
Equally important, in many problems the mapping 
X x A ⇒ P cannot be represented by a reasonable 
number of classifiers unless its categorical regulari-
ties are captured.  Finally, if classifiers are capable of 
expressing generalizations, it is important that the 
generalizations be accurate, i.e., that all of the state-
action combinations expressed by the classifier 



indeed result in the same payoff.  Otherwise perfor-
mance will usually be less than optimal, since some 
classifier predictions will be incorrect, causing the 
system to choose suboptimal actions. 

In light of these objectives, there are two broad re-
spects in which the traditional syntax appears lim-
ited.  First, the individual variables of the condition 
can take just two values, 1 and 0 (plus #).  This is not 
a limitation where the environment’s variables are 
also strictly two-valued.  But in many environments, 
the variables of interest are continuous, or may take 
on more than two discrete values.  Clearly, if E has 
continuous variables, it will only be in fortuitous 
cases that its categorical regularities can be ac-
curately captured by thresholding to fit the {1,0,#} 
coding, and then only with just the right thresholds. 

This problem can be alleviated to some extent by al-
lowing variables in the condition to be expressed by 
binary numbers greater than 1, e.g., by four bits to 
represent a range from 0 to 15.  The problem here is 
that many possible regularities of E are still not ex-
pressible. For example, 111# will match the range 14-
15, but a range such as 13-14 cannot be expressed as 
a four-position string from {1,0,#}. 

One solution (Wilson 1994, 1999) would be to ex-
plore condition encodings where each variable is 
expressed by a real interval.  For instance, the inter-
val (13.0 ≤ v < 14.0) would be expressed by the num-
bers 13.0 and 14.0 as an ordered pair, or, alterna-
tively, by 13.5 as a center value and 0.5 as a 
‘‘spread’’ or delta value around it.  The classifier 
condition would be a concatenation of such pairs. 
The condition would be satisfied, or match, if each 
component of the input, a real vector, fell within the 
interval denoted by the corresponding ordered pair.  
The condition would thus express a conjunct of in-
terval predicates.  The interval predicates would be 
restricted to connected intervals (two or more sepa-
rated intervals could not be expressed in one classi-
fier), but that will in many cases be satisfactory.  
Classifiers with interval predicates would be 
evolved using genetic operators appropriate to real-
valued variables.  The application to practical areas 
like ‘‘data mining’’ is clear, since the variables there 
are often continuous. 

The second limitation of the traditional syntax stems 
from the fact that the condition is a conjunct of 
predicates, i.e., an AND. For problems, such as Bool-
ean functions, where the categorical regularities are 
expressible as ANDs of the variables, the syntax is 
appropriate because it matches E’s own ‘‘syntax’’ 
directly.  However, in other environments, the 

categorical regularities can be quite different, and so 
therefore is the optimal syntax. 

For example, consider a robot having a linear array 
of light sensors around its periphery.  Appropriate 
actions may depend on how much total stimulus is 
coming from one direction vs. another.  A natural 
kind of classifier condition might compare the sum 
of certain sensor values with the sum of certain 
other values; if the first sum was greater, then a cer-
tain payoff would be predicted for an action like ro-
tating to the left.  Such a condition is impossible to 
express with the traditional syntax, and in fact 
would require a large number of separate classifiers.  
Instead, one would like a condition syntax that 
could directly express a predicate involving com-
parisons of sums.  Such a predicate would represent 
a categorical regularity with respect to all sensor 
value combinations that make it true.  More gener-
ally, one would like a syntax permitting expression 
of any predicate, or truth-function of the input vari-
ables. 

Predicates of any type can be constructed as Lisp s-
expressions of primitive functions appropriate to the 
given environment.  For example, in the problem 
just mentioned, appropriate primitives would in-
clude ’+’ and ’>’.  Genetic programming (Koza 1992) 
has shown in principle how such predicates might 
be evolved, leading to the suggestion of s-classifiers, 
classifiers with s-expression conditions (Wilson 
1994).  Recently, Lanzi & Perrucci (1999) reported 
learning of the Boolean 6-multiplexer using XCS 
with s-classifiers.  Learning times in terms of num-
ber of examples seen were approximately equal to 
times with the traditional syntax, 
suggestingperhaps surprisinglythat use of s-
expressions may not bring greater learning complex-
ity.  Their experiments with sequential problems in a 
‘‘woods’’ environment were equally promising in 
this respect.  The results encourage extension of XCS 
and s-classifiers to environments with a wide range 
of appropriate predicate functions. 

It is worth noting that genetic programming and 
XCS use similar fitness measures.  While in GP the 
fitness measure can vary with the problem domain, 
very often it involves the degree of fit between the 
candidate function and a number of pre-specified 
‘‘fitness cases’’.  That is, the fitness of the candidate 
is measured by the accuracy with which its output 
matches the values of the fitness cases.  In XCS, the 
fitness of a classifier is measured by the accuracy 
with which it predicts the payoff that is received 
when it matches the input and the system chooses 
its action.  The classifier’s ‘‘fitness cases’’, so to 



speak, are the states it matches and the associated 
payoffs (for its action). This similarity suggests that 
much of the technique developed for GP should 
carry over well to XCS.  It also suggests thinking of 
the classifier’s condition primarily as a payoff-
predicting function instead of as a predicate testing 
for a match.  It is in fact reasonable to consider ex-
tensions in which the classifier predicts not a con-
stant payoff value, but a value that varies with input 
state.  The fitness of such a classifier would still be 
measured by the accuracy of the predicted values.  
Evolution of such classifiers could lead to further 
reductions in population size, since each could cover 
(x,a) pairs having different payoff values. In the 
limit, the population might evolve to consist of just 
one species of classifier, predicting all payoffs.  This 
speculative outcome would be like the result of stan-
dard genetic programming, in which just one best 
individual is sought, but would occur by a different 
and possibly faster route. 

S-classifier conditions are variable-length and, un-
like traditional conditions, not all input variables 
need be represented.  Missing variables are in effect 
‘‘don’t cares’’.  The simplest kind of variable-length 
condition would concatenate the variables that are 
included as an unordered string of <variable, value> 
pairs. The format is the same as that employed by 
Goldberg, Korb & Deb (1989) in the messy genetic 
algorithm.  Lanzi (1999a) experimented with this 
condition format using genetic operators and other 
techniques similar to those in the messy GA, while 
leaving unchanged the rest of XCS.  After encounter-
ing and solving certain problems of under- and 
over-specification, Lanzi was able to achieve optimal 
performance on problems also solved optimally by 
regular XCS.  Lanzi’s messy classifier system has the 
property that a population evolved for a certain set 
of sensors can be installed in a system having ad-
ditional sensors and through mutation alone will 
continue evolving to take advantage of the ad-
ditional sensors.  This follows from the position-
independence and lack of fixed format of the messy 
CS, and is experimentally demonstrated in the pa-
per.  Lanzi suggests that position-independence 
‘‘can improve the portability of the behaviors 
learned between different agents’’, a property that 
would presumably also hold for the s-classifier sys-
tem. 

The work on representation in XCS is aimed at in-
creasing its learning power and ability to deal with 
payoff landscapes of any reasonable sort. Each pay-
off landscape has regularities.  For high performance 
and representational efficiency, XCS must not only 

detect the regularities, but must also be able to rep-
resent them accurately.  Pilot success with s-
classifiers hints that this will be possible for any en-
vironment, but there is great room for further ad-
vances and understanding. 

4 PREDICTIVE MODELING 

XCS learns the mapping X x A ⇒ P, a payoff model 
of E, but the environment offers additional informa-
tion that XCS could usefully predict. Specifically, 
given a state x and an action a, there results not only 
a payoff p, but a next state y.  If XCS were to learn 
the mapping X x A ⇒ Y, with elements (x,a) → y, it 
could, from any present state x, consider chains of 
actions extending into the future; that is, it could 
plan.  The mapping X x A ⇒ Y is usually termed a 
predictive model. 

Holland (1990) and Riolo (1991) proposed classifier 
systems in which each classifier has a condition, an 
action, and a prediction of the resulting next state.  
The systems (which differed somewhat) were to 
learn predictive models of E, but because the experi-
ments did not involve the discovery or GA compo-
nent, the systems’s workability in practice is un-
known.  Sutton’s (1991) Dyna system used a predic-
tive model coupled with standard reinforcement 
learning algorithms to speed up learning in goal-
finding problems.  Dyna learned the payoff map-
ping X x A ⇒ P not only by trial and error in the ac-
tual environment, but also through hypothetical ac-
tions carried out in the predictive model as it was 
being built up, resulting in much faster learning of 
the payoff map, at least in terms of real actions in E.  
Sutton experimented in environments with uniquely 
labeled states, and used tabular learning algorithms 
such as tabular Q-learning, so that no generalization 
over states occurred.  However, the Dyna concept 
would carry over directly to XCS.  Stolzmann’s 
(1998) Anticipatory Classifier System (ACS) predicts 
the next state and has been demonstrated experi-
mentally in small problems.  ACS does not use the 
GA, but instead generates a new, correct, classifier 
when existing classifiers fail to predict correctly, i.e., 
are inaccurate.  The system has many interesting fea-
tures that deserve further investigation. 

An XCS classifier suitable for both payoff and pre-
dictive modeling could have the form 
<condition>:<action> ⇒ <prediction>:<expecton>, in 
which <expecton> is a vector of variables describing 
the succeeding state (Wilson 1995). The fitness of 
this classifier, as in regular XCS, would be measured 
by the accuracy of the prediction of both payoff and 



the next state. Questions arise, of course.  What form 
should the expecton have?  How is the accuracy of 
the expecton measured?  To address these questions, 
suppose that the expecton can contain unspecified 
positions, along the lines of don’t cares but in this 
case more like ‘‘don’t knows’’. Then the expecton’s 
accuracy could be measured by a function of the 
number of specified positions and the agreement 
between the values in those positions and the actual 
next state’s values.  In situations where the next state 
was not completely predictable, but some state vari-
ables were, a high fitness classifier could evolve 
which successfully predicted just those variables 
and left the others as ‘‘don’t knows’’.  The expecton 
would in effect generalize over next states. 

It is not clear, however, that the payoff and predic-
tive mappings should be learned by the same set of 
classifiers.  Perhaps it is better to have classifiers of 
the form <condition>:<action> ⇒ <prediction> and of 
the form <condition>:<action> ⇒ <expecton>.  Then 
the underlying state regularities could be captured 
independently of the payoff configuration, which 
might change.  Too, it could be that the payoff map 
was simple compared with the state map, and hav-
ing separate classifier populations would exploit 
this.  If the environment contained several kinds of 
payoff, with distinct payoff maps, use of a separate 
state classifier system would mean the state infor-
mation had only to be learned once. 

The best approaches to adding predictive modeling 
to XCS are completely open at present.  The benefits 
include faster learning along the lines of Dyna, but 
incorporating generalization.  Other benefits may 
stem from the fact that the state classifier system, if it 
involves significant generalization in its conditions 
and expectons, would yield a sort of simplified re-
coding of E, that is, a simplified description of the 
state landscape.  How this might be useful is not 
clear at present. 

5 INTERNAL STATE 

At this point we must disturb the neat X x A ⇒ P 
environment model by introducing the 
Markov/non-Markov distinction.  An environment 
has the Markov property if the prediction of p given x 
and a cannot be improved by knowledge of states 
preceding x.  Strictly speaking, this is the Markov 
property with respect to payoff.  Such an environ-
ment might or might not be Markov with respect to 
next states.  But, for simplicity, by Markov we shall 
mean Markov with respect to payoff.  An environ-
ment is non-Markov if it is not Markov. 

The Markov/non-Markov distinction is crucial in 
reinforcement learning because it says whether an 
environment can or cannot be predicted on the basis 
of current input information.  If so, the system can 
rely entirely on that information.  If not, it must re-
member, or encode, something about the past and 
use that in conjunction with current input informa-
tion in order to make correct decisions. If E is 
Markov (and deterministic), its payoff properties can 
be represented by X x A ⇒ P.  If E is non-Markov, 
the mapping is not well defined because the p result-
ing from (x,a) is not predictable. 

A very simple example of the distinction is the fol-
lowing (Lin 1993).  Imagine a gift packing task in 
which a gift must be placed in an initially closed box 
after which the box is wrapped.  Initially the box is 
closed with no gift inside and must be opened and 
filled.  Later, with gift inside and again closed, it 
must be wrapped.  In both cases, the system’s sen-
sors see a closed box, but the actions called for are 
different.  If the system only sees the box, it can’t 
perform correctly unless it remembers what it has 
done, or has made some other mental note, i.e., un-
less it maintains some form of internal state.  The 
environment is non-Markov.  If, however, the 
system’s sensors include one that weighs the box, 
then for a high enough gift to box weight ratio, the 
environment becomes Markov and no internal state 
is required. 

Note how the distinction very much depends on the 
system’s sensors. Environments can be ‘‘made’’ 
Markov if there are enough sensors. Markov envi-
ronments will become non-Markov if the number of 
sensors (or their ability to make distinctions) is re-
duced.  Thus it is not the environment itself that is 
Markov or non-Markov, but the environment as 
sensed by the system.  In speaking of an environ-
ment as Markov or non-Markov, we shall mean the 
environment in conjunction with the system’s sen-
sors. 

How can XCS learn non-Markov environments?  In 
reinforcement learning, there are two major ap-
proaches.  One, the ‘‘history window’’, extends the 
input vector to include inputs from previous time-
steps, enlarging the effective state space until the 
mapping X’ x A ⇒ P, with X’ the extended space, 
becomes well-defined, and the problem is effectively 
Markov.  Though X’ grows exponentially with the 
length of the history window, this approach can be 
satisfactory if the window is very short.  The other 
approach attempts to identify and remember past 
events that will disambiguate X x A ⇒ P, and these 



are combined with the current x to make decisions.  
Some versions of this approach employ recurrent 
neural networks.  The problem here is that the com-
plexity of the search is again exponential with dis-
tance into the past. 

Holland’s classifier system contains an internal mes-
sage list, where information from one time-step can 
be posted by a classifier and then be read by another 
classifier on a later time-step.  It was hoped that clas-
sifiers would evolve whose postings and readings 
led to high performance in situations where past in-
formation was needed (i.e, in non-Markov environ-
ments).  Holland’s idea was neither a history-
window approach, nor one that searched purpo-
sively for critical past information. Rather, the ap-
proach was Darwinian, relying on variation and se-
lection. Unfortunately, because of the complexity of 
the message list structure, and alsoin our 
opinionbecause fitness was based on ‘‘strength’’ 
and not accuracy as in XCS, Holland’s system 
showed only limited success on non-Markov prob-
lems (Robertson & Riolo 1988, Smith 1991). 

Wilson (1994) suggested that coupling between post-
ing and reading classifiers would be enhanced if the 
internal state were embodied in a simple bit register 
instead of a list of messages.  He observed that in 
many problems, decisions needing past information 
often require only one or a few bits.  Classifier struc-
ture could take the form, 
<external condition><internal condition>:
<external action><internal action> ⇒ <prediction>.  
The internal condition would apply to the internal 
bit register; the internal action would set, reset, or 
ignore bits there. 

The suggestion was taken up in Cliff & Ross (1994).  
They added an internal register to Wilson’s (1994) 
ZCS system (a classifier system with fitness based 
traditionally on strength).  The resulting system, 
ZCSM, performed quite well, though not optimally, 
in several simple non-Markov mazes.  Examination 
of evolved populations showed that ZCSM indeed 
evolved classifiers that employed the internal regis-
ter to discriminate the mazes’ ‘‘aliased’’ (indistin-
guishable) states. 

Lanzi (1998a) obtained improved results with 
XCSM, which added an internal register to XCS, but 
more difficult mazes could still not be learned opti-
mally.  In further work (Lanzi 1998b), he proposed 
that exploration of internal actions should be carried 
out differently than exploration of external actions.  
He found that too much exploration of internal ac-
tions would prevent the stable formation of 

classifiers that acted appropriately on the internal 
register contents.  To use the register effectively im-
plies that the system must both create an appropri-
ate internal ‘‘language’’ (of register settings) and 
also learn how to interpret that language.  Lanzi ex-
perimented with XCSMH, a modified XCSM in 
which the internal register settings (the ‘‘language’’) 
were explored only by the genetic algorithm and 
were not explored as part of the action selection pro-
cess.  The language was thus explored more slowly 
than its interpretation.  This resulted in optimal per-
formance on more difficult (more aliased states) 
mazes.  In further work (Lanzi 1999b), he discovered 
that still improved performance would occur if the 
internal register was somewhat redundant, that is, 
had size somewhat greater than the minimum num-
ber of bits needed in principle to disambiguate the 
environment’s aliased states.  This last result con-
firms, in classifier systems, a similar result observed 
by Teller (1994) who used an internal register with 
genetic programming. 

Cliff & Ross (1994) worried that systems using an 
internal register would not scale up well, because 
the amount of needed exploration would grow ex-
ponentially with the register size.  Lanzi’s results 
suggest this may not be a concern, since better per-
formance results from less internal exploration than 
might have been thought.  In effect, it is not neces-
sary to explore all possible settings of the register. 
Many settings will be interpretable to yield high or 
optimal performance; it is only necessary to find one 
of them; Smith (1991) makes a related observation. 

Good learning in non-Markov environments is per-
haps the largest outstanding problem in RL.  
Progress using an internal register with XCS sug-
gests this approach should be pursued vigorously.  
Most important would seem to be to study further 
how best to do ‘‘internal exploration’’, to under-
stand better the complexity implications of the regis-
ter and its size, and of course to investigate increas-
ingly difficult environments. Learning of hierarchi-
cal behavior is another outstanding RL problem. It is 
possible that internal ‘‘languages’’ will evolve that 
use the register in a hierarchical manner; i.e., certain 
bit positions will encode longer-term contexts while 
others encode behavioral details. This might open 
the way to realization of ‘‘hierarchical classifier sys-
tems’’ (Wilson 1987). 

6 NOISE AND UNCERTAINTY 

The vast majority of classifier system research has 
used noiseless, deterministic environments, but 



these ideal properties do not hold in many potential 
applications.  Robotic sensors are often extremely 
noisy, as are the data in most ‘‘data mining’’ prob-
lems.  Besides noise inherent in the environment, 
XCS is vulnerable to noise-like uncertainty in two 
other respects.  First, if the environment is non-
Markov and the system has insufficient internal 
state to disambiguate it, the system’s classifiers will 
not be able to arrive at stable predictions. Classifier 
errors will not go to small values or zero and this 
error will be indistinguishable from error that re-
sults from ‘‘true’’ environmental noise.  Second, if a 
classifier is overgeneral, it will make prediction er-
rors that are also not distinguishable from the other 
kinds, at least until the overgenerality is eliminated. 

Since in XCS fitness is based on accuracy, it is impor-
tant to determine XCS’s sensitivity to external noise.  
Lanzi & Colombetti (1999) tested XCS in Markov en-
vironments where the system’s probability of carry-
ing out its intended action was less than 1.0.  Specifi-
cally, in a grid-world maze, the system would with 
probability ε ‘‘slip’’ to one or the other of the two 
cells adjacent to its intended destination cell. Thus 
the system was subject to a kind of action noise.  For 
values of ε up to about 0.25, Lanzi & Colombetti 
found that performance was nearly as good as XCS 
without generalization (no #’s) or tabular Q-
learning, all subject to the same action noise. Thus 
even with generalization ‘‘turned on’’, XCS was able 
evolve classifiers as accurate as those evolved when 
generalization was not enabled.  The system was 
able to eliminate errors due to overgeneralization 
even in the presence of external noise over which it 
had no control. However, at an ε of 0.50, perfor-
mance broke down drastically. 

The authors then introduced a technique that re-
sulted in nearly optimal performance even when ε 
was 0.50.  A new parameter µ was given each classi-
fier for keeping an estimate of the minimum predic-
tion error among the classifiers in its action set [A].  
Each time a classifier takes part in [A], it looks at the 
other classifiers in [A] and notes the value of the 
prediction error parameter of the classifier with the 
lowest such parameter.  Our original classifier then 
updates its µ parameter using the value just identi-
fied. Finally, when it updates its own prediction er-
ror parameter, it uses not its current prediction er-
ror, but that error minus its current value of µ.  The 
procedure is based on the heuristic that the mini-
mum prediction error in the action set is a good esti-
mate of the actual external noise, since all the classi-
fiers are subject to it.  Subtracting µ out means that 
each classifier’s error estimate approaches the value 

it would have in a noiseless environment, so that 
overgeneralization errors areevidently elimi-
nated and performance is maintained. The technique 
is a new kind of example of how the population-
based nature of XCSthe fact that it supports mul-
tiple hypotheses for each situationcan markedly 
aid the search. 

It is important to test the technique on the other 
kinds of environmental noise, namely noise in the 
sensors and in external payoffs.  Both are important 
for prediction from real data, since data sets used for 
learning will often contain errors in data (sensor) 
values and inconsistencies in outcomes (payoffs).  
Lanzi & Colombetti’s technique promises to be valu-
able in learning predictions from noisy data while 
retaining the ability to detect generalizations, prop-
erties which will be of great interest to human users 
of XCS in data applications. 

7 XCS THEORY AND TECHNIQUE 

7.1  GENERALIZATION 

From the beginning, XCS has displayed a strong ten-
dency to evolve classifiers that detect and accurately 
represent the categorical regularities of its environ-
ment.  This is based, first, on making fitness depend 
on accuracy of prediction (in contrast to ‘‘strength’’ 
in the Holland framework). Second, it depends on 
the use of a niche GA (Booker 1982), which has the 
consequence that of two equally accurate classifiers 
where one matches a subset of the states matched by 
the other, the more general classifier will win out 
because it has more reproductive opportunities (for 
a detailed discussion, see Wilson (1995)). 

The drive to evolve accurate, maximally general 
classifiers at the same time as it learns the mapping 
X x A ⇒ P suggests that XCS tends to evolve popu-
lations that consist of the smallest possible set of 
non-overlapping classifiers, thus representing the 
environment’s payoff landscape optimally. Kovacs 
(1997a) termed this the XCS Optimality Hypothesis, 
and demonstrated it for Boolean multiplexer prob-
lems.  It is important to explore this direction fur-
ther, in particular by trying Boolean problems which 
are less symmetrical than the multiplexers.  In the 
multiplexer function, each categorical  regularity 
covers an equal portion of the input domain. As a 
result, for random inputs, all parts of the population 
are updated and subjected to GA processes at ap-
proximately the same rate.  For a function with cat-
egorical regularities of unequal size, this equality of 
rates would not hold and one can expect that XCS’s 
functionality will be affected to a degree that should 



be determined.  A similar kind of test would be 
achieved with the multiplexer by changing to an in-
put distribution that was not uniformly random. 

XCS’s tendency to evolve accurate, maximally gen-
eral classifiers is not guaranteed.  Situations can 
arise, particularly in sequential problems using dis-
counting, in which overgeneral classifiers may fail to 
be eliminated, even though their accuracy is low.  
Elimination depends on the existence of a more ac-
curate competitor classifier in every action set where 
the overgeneral occurs.  Normally this will be the 
case, due to the genetic mechanisms.  However, if 
populations are too small relative to the number of 
distinct categorical regularities in E, action set sizes 
will be small so that the GA will be slow to generate 
the competitors and an overgeneral may not be 
eliminated before it causes trouble, i.e., before action 
errors occur that in the worst case bring a break-
down of overall performance. 

Overgenerals will also not be eliminated if the errors 
in an action set are so small that the system’s ac-
curacy mechanism cannot differentiate the fitnesses.  
Discounting can have this effect, since the 
predictionsand thus errorsbecome smaller far-
ther from sources of external payoff.  XCS originally 
defined accuracy as a negative exponential function 
of prediction error.  If one very small error is never-
theless twice as big as another one in the same ac-
tion set, an exponential function will not differenti-
ate them well since the ratio of two exponentials is 
an exponential of the difference of their arguments, 
and may be small. The problem is substantially re-
duced by changing the accuracy function to a nega-
tive power function of the error (Wilson 1998).  
Then, if one error is twice another, the accuracy ratio 
is a power of two, independent of the actual error 
values. 

Despite larger populations and an improved ac-
curacy function, performance can still sometimes 
break down due to failure to eliminate overgenerals 
rapidly enough.  For such ‘‘emergencies’’, Lanzi 
(1997) developed a mechanism termed specify.  Ev-
ery action set is tested to see if its average error rela-
tive to the population average error exceeds a 
threshold. If so, a new classifier is added to the ac-
tion set that covers the current input and whose con-
dition has a predetermined probability of don’t care 
positions.  The intention is to add a fairly specific 
classifier to the high-error action set that will com-
pete in accuracy with the overgeneral classifiers that 
are probably present.  Specify works well in that 
performance breakdowns due to overgeneralization 
are eliminated.  At the same time, because it acts 

locally, specify does not restrain the system from 
forming accurate generalizations where warranted. 

In the first work on XCS, the GA occurred in the 
match set [M].  Later (Wilson 1998) it was moved to 
the action set [A].  The result was that in certain 
problems the population sizein terms of 
macroclassifiersevolved to be smaller.  The 
smaller populations contained the same accurate 
general classifiers as before, but there were fewer 
more-specific versions of these present, and fewer 
inaccurate classifiers.  The apparent reason for this 
improvement is fairly subtle. 

Consider a match set, and suppose that the state x 
being matched participates in two categorical regu-
larities of E: ({x}1,a1) → p1 and ({x}2,a2) → p2. 

Suppose classifiers C1 and C2 in [M] perfectly repre-
sent these regularities.  That is, the condition of C1 
exactly fits{x}1 and the condition of C2 exactly fits 

{x}2.  Both classifiers are accurate and maximally 

general.  What if the GA crosses them? If the two 
conditions are identical, then the offspring condi-
tions will be identical to the parent conditions.  
However, if the two conditions are not identical, the 
offspring conditions may be different from those of 
both of the parents (e.g., cross #1 and 1#).  Since by 
hypothesis the parents were accurate and maximally 
general, the offspring, if different from the parents, 
will not be and will thus constitute a kind of cross-
over ‘‘noise’’ that the system will have to eliminate.  
Thus even if the system has found accurate, maxi-
mally general classifiers that match the present in-
put, the action of crossover willif {x}1 and {x}2 

differcontinue to generate suboptimal classifiers. 

Suppose however that the GA, and thus crossover, 
occurs in [A] instead of [M].  Now only one of C1 
and C2 is present and not the other.  Since they can-
not be crossed, the offspring just mentioned will not 
be formed and do not have to be eliminated.  C1 
(suppose it’s the one present) will still cross with 
more-specific and more-general versions of itself 
that may be present too in the action set; the same 
crosses would occur in the match set.  But the 
‘‘noise’’ due to crosses with C2 will not. The argu-
ment is clearest in an extreme case: assume the 
match set consists only of C1 and C2. 

The reduction in population size due to moving the 
GA to [A] was observed in problems where, if a clas-
sifier was accurate and maximally general, it was 
often not the case that another classifier with a dif-
ferent action but the same condition would also be 



accurate and maximally general (another way of 
saying that C1’s condition is different from C2).  
However, in problems where this was the case (con-
ditions of C1 and C2 always the same), the popula-
tion size was unchanged in moving the GA from [M] 
to [A]. Thus the shift to the action set appears justi-
fied both in principle and experimentally.  But fur-
ther examination in both respects is needed to un-
derstand fully what is happening. 

If the GA does occur in the action set, what can we 
say that crossover is actually doing?  Note that all 
classifiers in both the match and action sets must 
match the input.  However, all classifiers in the ac-
tion set have the same action.  Thus the GA may be 
regarded as searching for the besti.e. most general 
and accurateclassifier to represent the categorical 
regularity ({x},a) → p that the present (x,a) pair be-
longs to.  The classifiers in the action set have condi-
tions of varying specificity. They exist somewhere 
along the line between completely specific and com-
pletely general.  Crossover produces offspring that 
in general occupy points on the line different from 
their parents.  Clearly the GAusing crossover, mu-
tation, and selectionis searching along this line, 
driven by a fitness measure, accuracy, that is 
strongly correlated with specificity.  This is the heart 
of XCS’s discovery process, and a detailed theory is 
definitely called for. 

Also called for is a theory of how fitness based on 
accuracy interacts with the reproductive op-
portunity afforded by greater generality to drive the 
system toward classifiers that are both accurate and 
maximally general.  Wilson (1995) presented a heu-
ristic argument: of two equally accurate classifiers, 
the more general one would win out because being 
more general it occurs in more action sets and thus 
has greater chance to reproduce.  But the theory 
needs to be put on a quantitative basis. 

Wilson (1998) reported a secondary generalization 
method, subsumption deletion, that further reduces, or 
‘‘condenses’’, population size. The primary method, 
as discussed above, causes classifiers to generalize 
up to the point where further generalization (e.g., 
addition of #’s in the traditional syntax) would result 
in errors.  However, the process may actually stop 
short of this point, since a formally more general 
classifier (more #’s) will only win out if it can match 
more states of the environment (yielding more re-
productive opportunities). But those states may not 
actually be present in E, i.e., E may not contain all 
the states permitted by the encoding.  So the system 

will not evolve classifiers that are as formally gen-
eral as they could in fact be. 

To see this, suppose E contains the categorical regu-
larity ({000,001},a) → p1.  Suppose E also contains 

(100,a) → p2, where p2 and p1 are different.  Suppose 
further that the states 010 and 011 do not occur in E.  
The classifier 00#:a ⇒ p1 is clearly accurate. So also is 

0##:a ⇒ p1.  The second classifier is more general, 
but since it matches no more actual states than the 
first, it will not win out reproductively, and the two 
will coexist in the population.  Note, however, that 
the classifier ###:a ⇒ p1, being inaccurate, will not 
survive.  (See also the discussion in Lanzi (1999c)). 

In many problems, it is desirable to end up with 
classifiers that are as formally general as possible 
while still being accurate. The resulting population 
is smaller, and the key differentiating variables (e.g., 
the first bit in the example above) are more per-
spicuous.  Subsumption deletion accomplishes this 
by checking, whenever a new classifier is generated 
by the GA, whether its condition is logically sub-
sumed by the condition of an accurate classifier al-
ready in the action set.  If so, the new classifier is 
abandoned and not added to the population.  Sub-
sumption deletion is a powerful addition to the pri-
mary generalization mechanism, but it is somewhat 
risky.  For each categorical regularity, it tends to 
eliminate all but the formally most general, accurate 
classifier.  If the environment should change, such 
that certain states (e.g., 010 and 011 above) now oc-
cur, that classifier could fail drastically resulting in a 
breakdown of performance.  Retaining classifiers 
like 00#:a ⇒ p1 abovei.e., using only the primary 

processprevents this. 

7.2  CONNECTION WITH RL 

XCS’s learning algorithm is a straightforward adap-
tation of basic Q-learning.  The prediction of each 
classifier in the action set is updated by the current 
reward (if any) plus the discounted value of the 
maximum system prediction on the next time-step.  
The system prediction for a particular action is a 
fitness-weighted average of the predictions of each 
classifier in the match set that advocates that action.  
The maximum system prediction is the maximum, 
over the match set, of the system prediction for each 
action.  The essential difference with Q-learning is 
that classifierthat is, rulepredictions are up-
dated from predictions of other rules. In Q-learning, 
action-valuesthat is, predictions for pairs 



(x,a)are updated from other action-values.  XCS’s 
memory is contained in rule sets, whereas Q-
learning’s memory is stored in a table with one entry 
for each state-action pair. 

Of course, Q-learning-like algorithms have also been 
employed, for example, in neural-net learning.  But 
it is most interesting to compare XCS with tabular 
Q-learning.  That is the only case for which conver-
gence proofs are known.  In addition, there is an im-
portant sense in which XCS’s algorithm is like tabu-
lar Q-learning, but with generalization over the en-
tries of the table. 

If XCS is applied to a problem, but with generaliza-
tion turned off (no initial #’s, and none introduced 
by mutation), the result will be a set of classifiers 
corresponding to the equivalent Q-learning table, 
except that for most state-action pairs that do not 
actually occur in E there will be no classifier.  Thus, 
without generalization, XCS will in effect build the 
Q-learning state-action table ‘‘from scratch’’, but 
only for (x,a) pairs that actually occur in E. Perfor-
mance, apart from some noise introduced by the 
GA, will be identical to that of tabular Q-learning.  If 
the GA is completely turned off, and classifiers are 
only created by covering, performance will be the 
same as for tabular Q-learning, and the final popula-
tion will correspond precisely to Q-table entries that 
actually occur in E. 

With generalization turned on, performance by XCS 
will normally reach the same level as for tabular Q-
learning, but will take longer due to errors as ac-
curate general classifiers are discovered and empha-
sized.  If the problem contains categorical regulari-
ties and these can be represented by XCS’s syntax, 
then generalization will result in a population (in 
macroclassifiers) that is smaller than the correspond-
ing Q-table, often by a significant factor.   If one ex-
amines classifier predictions once the system has es-
sentially stopped evolving, they are found to equal 
the predictions of the corresponding Q-table.  Thus 
while no proofs of convergence are available, em-
pirically XCS converges like Q-learning, but with 
generalization as a bonus.  The same sort of parallel 
might hold with other reinforcement learning algo-
rithms, provided XCS’s update procedures were cor-
respondingly modified.  (See Kovacs 1999 and Lanzi 
1999b for detailed discussion of the relation between 
XCS and Q-learning.) 

7.3  COMPLEXITY 

Real-world problems often have very large state 
spaces.  Reinforcement learning methods such as Q-
learning that depend on tables of values scale 

exponentially with the dimensionality of the state 
space. Not only does the table grow exponentially, 
but so does the time needed to fill in the values.  
Tabular Q-learning is not sensitive to categorical 
regularities in the environment and so cannot avoid 
the exponential explosion.  But research with XCS 
has suggested that because it detects the 
regularitiesand when it can represent them 
syntacticallyXCS’s learning complexity is depen-
dent not on the dimensionality of the space, but on 
the complexity of the underlying regularities.  In this 
respect it may differ significantly from other ap-
proaches to handling large state-spaces such as ra-
dial basis functions, tiling (CMAC) methods, and 
neural networks, whose complexities are ultimately 
tied to state-space size (Sutton & Barto 1998). 

Information about XCS’s learning complexity comes 
from experiments with the family of Boolean multi-
plexer functions (Wilson 1998). Three functions were 
learned: the 6-, 11-, and 20-multiplexers, where the 
numbers indicate the lengths of the input bit-string l 
or in other words, the dimensionality of the state 
space. The disjunctive normal forms (DNF) for the 
functions contain, respectively, 4, 8, and 16 terms.  
Associated with each term are exactly four payoff 
regularities, so there are, respectively, 16, 32, and 64 
payoff regularities in the three spaces.  An example 
of a payoff regularity for the 6-multiplexer is 
({000000, 000001, 000010, 000011, 000100, 000101, 
000110, 000111}, 0) → p, where p is the payoff associ-
ated with a correct decision.  The accurate, maxi-
mally general classifier corresponding to this regu-
larity is 000###:0 ⇒ p. 

XCS reached 100% performance on the three func-
tions after seeing, on average, 2,000, 10,000, and 
50,000 random input strings.  Final population sizes 
in macroclassifiers were, respectively, 55, 148, and 
345.  In contrast, the state space sizes are, respec-
tively, 64, 2,048, and 1,048,576, growing exponen-
tially.  If one infers from these limited data that the 
learning times grow by a factor of five from one 
multiplexer to the next, then the times can be fit to a 

function cgp, where g is the number of regularities 
in the function, p = log 5 = 2.32, and c = 3.22. Thus 
the learning time complexity would be a low power 
of the number of regularities in the space. 

A very tentative theory of this result can be pro-
posed.  The search for a set of classifiers that ac-
curately represent the regularities may involve two 
factors.  One is the number of regularities itself. The 
other is the length of the classifier condition, because 
each position of the condition must be ‘‘set’’ 



correctly.  The length of the condition is l, but the 
number of regularities is approximately propor-
tional to l  it approaches an exact proportionality 
in the limit of large multiplexers.  It seems reason-
able to conclude that the search time should depend 
on product of these two factors, which would be 
consistent with the function just proposed. 

Further research is needed to test these ideas.  In 
particular, XCS should be applied to larger multi-
plexers, and to other function families.  At this point, 
however, XCS promises to scale up well in problems 
for which its representational syntax is appropriate. 

7.4  TECHNIQUES 

Traditionally, classifier system populations contain 
many classifiers that, due to reproduction without 
associated crossover or mutation, are structurally 
identical, i.e., they have the same conditions and ac-
tions.  Wilson (1994) introduced macroclassifiers in 
order to eliminate this redundancy as well as reduce 
processing time and save storage.  In a population of 
macroclassifiers, each newly generated classifier is 
examined to see if a structurally identical classifier 
already exists.  If so, the existing classifier’s numer-
osity parameter is increased by one and the new 
classifier is abandoned. If not, the new classifier is 
added to the population with its numerosity initial-
ized at one.  XCS uses a macroclassifier population, 
but all operations are otherwise conducted as 
though the population consists of ordinary classi-
fiers (‘‘microclassifiers’’); that is, numerosities are 
taken into account.  In a macroclassifier population, 
the sum of the numerosities, N, equals the number 
of underlying microclassifiers and is a constant.  N is 
the number that in traditional systems denotes the 
population size. 

A population of macroclassifiers consists entirely of 
structurally unique individuals.  As such it permits a 
much better view of the system’s ‘‘knowledge’’ than 
does a traditional population.  Classifiers with high 
numerosity tend to be those with maximal accurate 
generalizations, so the most significant knowledge 
can be determined readily by sorting the population 
by numerosity (Kovacs 1997a).  Furthermore, the 
size of the population in macroclassifiers measures 
the system’s ability to detect and represent the regu-
larities in E.  The macroclassifier idea is in fact what 
permits realization of the improvement in space 
complexity that XCS achieves through generaliza-
tion.  A traditional population would maintain size 
N regardless of the generalizations within it. 

Kovacs (1996) compared the behavior of XCS with 
and without macroclassifiers on the 6-multiplexer 

problem.  He found no significant difference in per-
formance.  A slight improvement in system predic-
tion error using macroclassifiers was explainable 
since when a new classifier already exists it is not 
introduced into the population, so its arbitrary initial 
parameters can’t affect system predictions.  It there-
fore appears that the macroclassifier technique is 
valid and uniformly beneficial. 

Whenever XCS generates a new classifier, either 
through the GA or covering, a classifier is effectively 
deleted in order to maintain the microclassifier 
population size at N.  Selecting a classifier for dele-
tion is done as though the population consists of mi-
croclassifiers. The actual ‘‘deletion’’ is carried out by 
simply decrementing some classifier’s numerosity 
by one; if the classifier’s numerosity is exactly one, it 
is removed from the population. 

Kovacs (1997b) studied techniques for making the 
deletion selection and introduced a new one that is 
superior.  Previously (Wilson 1995), two techniques 
had been used.  Each classifier kept an estimate of 
the number of classifiers in the action sets it oc-
curred in. In the first technique, the probability of 
deletion was proportional to the estimate.  In the 
second technique, it was proportional to the esti-
mate but multiplied by a small fraction if its fitness 
was below the population average fitness by a cer-
tain factor.  Use of the action set size estimate tends 
to maintain action sets at about the same size, thus 
equally distributing system resources (classifiers). 
The reduction factor in the second technique was 
designed to penalize very low fitness classifiers and 
eliminate them rapidly. 

The second technique worked better than the first in 
that it resulted in smaller population sizes.  But it 
often deleted newly generated classifiers before they 
had a chance to gain fitness.  Kovacs’s new tech-
nique resolved this by combining the two previous 
ones. Each classifier was given an additional param-
eter keeping track of the number of times it had 
been a member of an action set.  In the Kovacs tech-
nique, if that number was less than, e.g., 20, the 
probability of deletion was as in the first old tech-
nique. If the number was equal to or greater than 20, 
the second old technique was used.  The new tech-
nique exhibited the advantages of the earlier two 
without their disadvantages. 

8 CONCLUSIONS 

We have reviewed the current state of XCS classifier 
system research, identifying the main accomplish-
ments and suggesting future directions. A notation 



for the environment’s predictive and categorical 
regularities was introduced to aid the discussion. 

Promising areas for further research include: (1) ex-
tending condition syntax so as to accept input vec-
tors with continuous, ordinal, nominal, and mixed 
components, and to enable representation of a 
greater range of environmental regularities; (2) con-
tinued exploration of the full representational gener-
ality of s-classifiers; (3) experimentation with XCS 
systems that predict the next state, so as to develop 
more complete models of the environment; (4) con-
tinued work on internal state to determine the scope 
of the register method and its potential for support-
ing hierarchical behavior; (5) further research on fil-
tering noise of all types, with applicability to learn-
ing from real data sets; (6) continued basic work on 
accurate generalization, aimed at understanding all 
relevant phenomena; (7) development of a "schema 
theory" for XCS’s genetic search process; (8) explo-
ration of RL techniques other than Q-learning in 
XCS; (9) further investigation of XCS’s learning com-
plexity experimentally and theoretically; and (10) 
continued examination of the basic XCS component 
algorithms in search of improvements. 

Important areas not discussed because next to noth-
ing is presently known include: (1) use of continu-
ous actions, e.g., turn exactly 34 degrees; and (2) bas-
ing XCS on continuous time, instead of discrete 
time-steps. Existing RL work in both of these areas 
could be brought to bear. In addition, it is important 
to elucidate the relationship between XCS and tradi-
tional classifier systems (Kovacs 1999). 

XCS is a new kind of classifier system showing sig-
nificant promise as a reinforcement learner and ac-
curate generalizer.  Its full potential is just beginning 
to be explored. 
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