
State of XCS Classifier System Research

Stewart W. Wilson
Prediction Dynamics

Concord, MA 01742, USA
wilson@prediction-dynamics.com

Abstract

XCS is a new kind of learning classifier sys-
tem that differs from the traditional one pri-
marily in its definition of classifier fitness
and its relation to contemporary reinforce-
ment learning. Advantages of XCS include
improved performance and an ability to
form accurate maximal generalizations.
This paper reviews recent research on XCS
with respect to representation, predictive
modeling, internal state, noise, and underly-
ing theory and technique. A notation for
environmental regularities is introduced.

1 INTRODUCTION

A classifier system is a learning system that seeks to
gain reinforcement from its environment based on
an evolving set of condition-action rules called clas-
sifiers. Via a Darwinian process, classifiers useful in
gaining reinforcement are selected and propagate
over those less useful, leading to increasing system
performance. The classifier system idea is due to
Holland (1986), who laid out a framework that in-
cluded generalizability of classifier conditions, inter-
nal message-passing and reinforcement, and compu-
tational completeness. However, despite consider-
able research, the performance of the traditional sys-
tem has been mixed, and there have been few ad-
vances on the initial theory.

Recently, Wilson (1995) introduced XCS, a classifier
system that retains essential aspects of Holland’s
model, while improving on it in some respects.
XCS’s definition of classifier fitness is different from
the traditional one, and the system’s organization
includes ideas from the contemporary field of rein-
forcement learning (Sutton & Barto, 1998). Due to
the fitness changewhich is theoretically

basedXCS tends to evolve classifiers that are both
accurate in their prediction of payoff and maximally
general, resulting in higher performance as well as
compactness of representation. The traditional
model provides no theory as to how generalization
would occur accurately, and in fact it does not.
Theoretical understanding of XCS’s performance,
particularly the use of predictions and discounting,
is aided by the reinforcement learning (RL) connec-
tion. Theoretical understanding of performance in
the traditional model is limited.

XCS has been investigated on problems including
learning the Boolean multiplexer functions, and to
find goals in grid-like ‘‘woods’’ and maze environ-
ments. XCS reaches optimal performance in these
problems, which are generally more difficult than
problems set for the traditional system, where per-
formance is rarely optimal.

Because XCS appears both theoretically and practi-
cally to be a clear advance, and also because these
developments have come rather quickly, it is desir-
able to attempt a review of the current state of XCS
research (though some good work, unknown to the
author, may unfortunately be left out). The follow-
ing discussion assumes a familiarity with classifier
systems, as well as acquaintance with the basics of
XCS (Wilson 1995). The material is organized under
five topics: representation, predictive modeling, in-
ternal state, noise and uncertainty, and XCS theory
and technique. First, though, it will be useful to in-
troduce some simple notation to describe classifier
system environments.

2 ENVIRONMENT NOTATION

A classifier system acts to gain payoff in its environ-
ment. Say that x represents a particular environ-
mental state as detected by the system’s sensors at
time t and that a represents an action the system is

capable of taking in that state. Let p represent an
amount of payoff. Then the notation (x,a) → p says
that if the system takes action a in state x, payoff p
will be received. The expression states what we may
term a predictive regularity of the environment.

With some further notation, we can represent the
totality of predictive regularities. Let X stand for the
set of all environmental states (as read from its sen-
sors) that the system will encounter, let A represent
its set of available actions, and let P represent the set
of possible payoffs. Then there is a mapping X x A ⇒
P from the product set of states and actions to the set
of payoffs, that expresses the totality of predictive
regularities in the system’s environment. The map-
ping can also be regarded as representing the
system’s payoff landscape, since it associates a value
from P with every point in the space of sensor vari-
ables and actions defined by the X x A product set.
(Not all points in the space may be realizable by the
system).

Suppose that, for a given action a and payoff p, more
than one state x satisfies (x,a) → p. Let us write
({x},a) → p to express all such states compactly. We
term the expression ({x},a) → p a categorical regular-
ity. It describes a maximal set of states which are
equivalent in the sense that they all satisfy (x,a) → p
for a given value of a and a given value of p.

We can now look at the payoff landscape X x A ⇒ P
from a categorical perspective. In general, the land-
scape will not be indefinitely ‘‘irregular’’. Instead, it
will contain regions ({x},a) over which the value of p
is constant, or nearly so. Each such region is a cat-
egorical regularity. The points within the region are
equivalent with respect to payoff.

To summarize, a predictive regularity says that ac-
tion a in state x leads reliably to payoff p. A cat-
egorical regularity says that, given a, there may be
many states x which result in the same p.

Note, as an important aside, that often the payoff
from the environment is zero for most pairs (x,a).
This is the case in environments where the system
must perform a sequence of actions in order to ar-
rive in a state where payoff can be obtained. Thus,
much of the time, the system must ‘‘find its way’’
without benefit of payoff directly from the environ-
ment, i.e., without so-called external payoff or reward.
To deal with this situation, Holland proposed the
bucket brigade algorithm, in which external payoff is
in effect passed back from each activated classifier to
its predecessor. The bucket brigade was in fact the

first local reinforcement technique for learning in
sequential environments.

The technique used in XCS is similar in some re-
spects, but is closer conceptually and algorithmically
to Q-learning (Watkins 1989), a theoretically
grounded and widely used technique in contempo-
rary reinforcement learning. The result is that XCS
exists in an environment where the payoff for each
(x,a) is a combination of external payoff (if there is
any) and the system’s current estimate of the maxi-
mum payoff available in the succeeding state y.
Thus the payoff environment for XCS is a combina-
tion of payoffs from the ‘‘true’’ external environ-
ment and an internal estimation process modeled
after Q-learning. With this qualification, we shall
continue to characterize the environment by the
mapping X x A ⇒ P, at least until the next qualifica-
tion!

3 REPRESENTATION

In general, the objective of XCS is to capture, in the
form of classifiers, the predictive regularities of the
environment, E, so the system can attain payoff at
optimal rates. A second objective is to evolve a clas-
sifier population that captures E’s categorical regu-
larities compactly and accurately. In principle, com-
pactness of representation can occur because the
classifier syntax permits the formation of generaliza-
tions, classifiers whose conditions match more than
one state. In the traditional syntax, where the condi-
tion is a string from {1,0,#}, a condition can match
more than one state if it contains #’s.

Ideally, for each categorical regularity ({x},a) → p in
E, the system should evolve a classifier
<condition>:<action> ⇒ <prediction> in which the ac-
tion and prediction are a and p, respectively, and the
condition exactly corresponds to {x}; that is, all and
only the states in {x} are matched by the condition.
Put another way, the generalization expressed by
the classifier should correspond exactly to the cat-
egorical regularity. Evolving such classifiers is im-
portant because it minimizes population size in
terms of distinct classifiers (or macroclassifierssee
Section 7.4), resulting in rapid matching and vis-
ibility of the system’s knowledge to human beings.
Equally important, in many problems the mapping
X x A ⇒ P cannot be represented by a reasonable
number of classifiers unless its categorical regulari-
ties are captured. Finally, if classifiers are capable of
expressing generalizations, it is important that the
generalizations be accurate, i.e., that all of the state-
action combinations expressed by the classifier

indeed result in the same payoff. Otherwise perfor-
mance will usually be less than optimal, since some
classifier predictions will be incorrect, causing the
system to choose suboptimal actions.

In light of these objectives, there are two broad re-
spects in which the traditional syntax appears lim-
ited. First, the individual variables of the condition
can take just two values, 1 and 0 (plus #). This is not
a limitation where the environment’s variables are
also strictly two-valued. But in many environments,
the variables of interest are continuous, or may take
on more than two discrete values. Clearly, if E has
continuous variables, it will only be in fortuitous
cases that its categorical regularities can be ac-
curately captured by thresholding to fit the {1,0,#}
coding, and then only with just the right thresholds.

This problem can be alleviated to some extent by al-
lowing variables in the condition to be expressed by
binary numbers greater than 1, e.g., by four bits to
represent a range from 0 to 15. The problem here is
that many possible regularities of E are still not ex-
pressible. For example, 111# will match the range 14-
15, but a range such as 13-14 cannot be expressed as
a four-position string from {1,0,#}.

One solution (Wilson 1994, 1999) would be to ex-
plore condition encodings where each variable is
expressed by a real interval. For instance, the inter-
val (13.0 ≤ v < 14.0) would be expressed by the num-
bers 13.0 and 14.0 as an ordered pair, or, alterna-
tively, by 13.5 as a center value and 0.5 as a
‘‘spread’’ or delta value around it. The classifier
condition would be a concatenation of such pairs.
The condition would be satisfied, or match, if each
component of the input, a real vector, fell within the
interval denoted by the corresponding ordered pair.
The condition would thus express a conjunct of in-
terval predicates. The interval predicates would be
restricted to connected intervals (two or more sepa-
rated intervals could not be expressed in one classi-
fier), but that will in many cases be satisfactory.
Classifiers with interval predicates would be
evolved using genetic operators appropriate to real-
valued variables. The application to practical areas
like ‘‘data mining’’ is clear, since the variables there
are often continuous.

The second limitation of the traditional syntax stems
from the fact that the condition is a conjunct of
predicates, i.e., an AND. For problems, such as Bool-
ean functions, where the categorical regularities are
expressible as ANDs of the variables, the syntax is
appropriate because it matches E’s own ‘‘syntax’’
directly. However, in other environments, the

categorical regularities can be quite different, and so
therefore is the optimal syntax.

For example, consider a robot having a linear array
of light sensors around its periphery. Appropriate
actions may depend on how much total stimulus is
coming from one direction vs. another. A natural
kind of classifier condition might compare the sum
of certain sensor values with the sum of certain
other values; if the first sum was greater, then a cer-
tain payoff would be predicted for an action like ro-
tating to the left. Such a condition is impossible to
express with the traditional syntax, and in fact
would require a large number of separate classifiers.
Instead, one would like a condition syntax that
could directly express a predicate involving com-
parisons of sums. Such a predicate would represent
a categorical regularity with respect to all sensor
value combinations that make it true. More gener-
ally, one would like a syntax permitting expression
of any predicate, or truth-function of the input vari-
ables.

Predicates of any type can be constructed as Lisp s-
expressions of primitive functions appropriate to the
given environment. For example, in the problem
just mentioned, appropriate primitives would in-
clude ’+’ and ’>’. Genetic programming (Koza 1992)
has shown in principle how such predicates might
be evolved, leading to the suggestion of s-classifiers,
classifiers with s-expression conditions (Wilson
1994). Recently, Lanzi & Perrucci (1999) reported
learning of the Boolean 6-multiplexer using XCS
with s-classifiers. Learning times in terms of num-
ber of examples seen were approximately equal to
times with the traditional syntax,
suggestingperhaps surprisinglythat use of s-
expressions may not bring greater learning complex-
ity. Their experiments with sequential problems in a
‘‘woods’’ environment were equally promising in
this respect. The results encourage extension of XCS
and s-classifiers to environments with a wide range
of appropriate predicate functions.

It is worth noting that genetic programming and
XCS use similar fitness measures. While in GP the
fitness measure can vary with the problem domain,
very often it involves the degree of fit between the
candidate function and a number of pre-specified
‘‘fitness cases’’. That is, the fitness of the candidate
is measured by the accuracy with which its output
matches the values of the fitness cases. In XCS, the
fitness of a classifier is measured by the accuracy
with which it predicts the payoff that is received
when it matches the input and the system chooses
its action. The classifier’s ‘‘fitness cases’’, so to

speak, are the states it matches and the associated
payoffs (for its action). This similarity suggests that
much of the technique developed for GP should
carry over well to XCS. It also suggests thinking of
the classifier’s condition primarily as a payoff-
predicting function instead of as a predicate testing
for a match. It is in fact reasonable to consider ex-
tensions in which the classifier predicts not a con-
stant payoff value, but a value that varies with input
state. The fitness of such a classifier would still be
measured by the accuracy of the predicted values.
Evolution of such classifiers could lead to further
reductions in population size, since each could cover
(x,a) pairs having different payoff values. In the
limit, the population might evolve to consist of just
one species of classifier, predicting all payoffs. This
speculative outcome would be like the result of stan-
dard genetic programming, in which just one best
individual is sought, but would occur by a different
and possibly faster route.

S-classifier conditions are variable-length and, un-
like traditional conditions, not all input variables
need be represented. Missing variables are in effect
‘‘don’t cares’’. The simplest kind of variable-length
condition would concatenate the variables that are
included as an unordered string of <variable, value>
pairs. The format is the same as that employed by
Goldberg, Korb & Deb (1989) in the messy genetic
algorithm. Lanzi (1999a) experimented with this
condition format using genetic operators and other
techniques similar to those in the messy GA, while
leaving unchanged the rest of XCS. After encounter-
ing and solving certain problems of under- and
over-specification, Lanzi was able to achieve optimal
performance on problems also solved optimally by
regular XCS. Lanzi’s messy classifier system has the
property that a population evolved for a certain set
of sensors can be installed in a system having ad-
ditional sensors and through mutation alone will
continue evolving to take advantage of the ad-
ditional sensors. This follows from the position-
independence and lack of fixed format of the messy
CS, and is experimentally demonstrated in the pa-
per. Lanzi suggests that position-independence
‘‘can improve the portability of the behaviors
learned between different agents’’, a property that
would presumably also hold for the s-classifier sys-
tem.

The work on representation in XCS is aimed at in-
creasing its learning power and ability to deal with
payoff landscapes of any reasonable sort. Each pay-
off landscape has regularities. For high performance
and representational efficiency, XCS must not only

detect the regularities, but must also be able to rep-
resent them accurately. Pilot success with s-
classifiers hints that this will be possible for any en-
vironment, but there is great room for further ad-
vances and understanding.

4 PREDICTIVE MODELING

XCS learns the mapping X x A ⇒ P, a payoff model
of E, but the environment offers additional informa-
tion that XCS could usefully predict. Specifically,
given a state x and an action a, there results not only
a payoff p, but a next state y. If XCS were to learn
the mapping X x A ⇒ Y, with elements (x,a) → y, it
could, from any present state x, consider chains of
actions extending into the future; that is, it could
plan. The mapping X x A ⇒ Y is usually termed a
predictive model.

Holland (1990) and Riolo (1991) proposed classifier
systems in which each classifier has a condition, an
action, and a prediction of the resulting next state.
The systems (which differed somewhat) were to
learn predictive models of E, but because the experi-
ments did not involve the discovery or GA compo-
nent, the systems’s workability in practice is un-
known. Sutton’s (1991) Dyna system used a predic-
tive model coupled with standard reinforcement
learning algorithms to speed up learning in goal-
finding problems. Dyna learned the payoff map-
ping X x A ⇒ P not only by trial and error in the ac-
tual environment, but also through hypothetical ac-
tions carried out in the predictive model as it was
being built up, resulting in much faster learning of
the payoff map, at least in terms of real actions in E.
Sutton experimented in environments with uniquely
labeled states, and used tabular learning algorithms
such as tabular Q-learning, so that no generalization
over states occurred. However, the Dyna concept
would carry over directly to XCS. Stolzmann’s
(1998) Anticipatory Classifier System (ACS) predicts
the next state and has been demonstrated experi-
mentally in small problems. ACS does not use the
GA, but instead generates a new, correct, classifier
when existing classifiers fail to predict correctly, i.e.,
are inaccurate. The system has many interesting fea-
tures that deserve further investigation.

An XCS classifier suitable for both payoff and pre-
dictive modeling could have the form
<condition>:<action> ⇒ <prediction>:<expecton>, in
which <expecton> is a vector of variables describing
the succeeding state (Wilson 1995). The fitness of
this classifier, as in regular XCS, would be measured
by the accuracy of the prediction of both payoff and

the next state. Questions arise, of course. What form
should the expecton have? How is the accuracy of
the expecton measured? To address these questions,
suppose that the expecton can contain unspecified
positions, along the lines of don’t cares but in this
case more like ‘‘don’t knows’’. Then the expecton’s
accuracy could be measured by a function of the
number of specified positions and the agreement
between the values in those positions and the actual
next state’s values. In situations where the next state
was not completely predictable, but some state vari-
ables were, a high fitness classifier could evolve
which successfully predicted just those variables
and left the others as ‘‘don’t knows’’. The expecton
would in effect generalize over next states.

It is not clear, however, that the payoff and predic-
tive mappings should be learned by the same set of
classifiers. Perhaps it is better to have classifiers of
the form <condition>:<action> ⇒ <prediction> and of
the form <condition>:<action> ⇒ <expecton>. Then
the underlying state regularities could be captured
independently of the payoff configuration, which
might change. Too, it could be that the payoff map
was simple compared with the state map, and hav-
ing separate classifier populations would exploit
this. If the environment contained several kinds of
payoff, with distinct payoff maps, use of a separate
state classifier system would mean the state infor-
mation had only to be learned once.

The best approaches to adding predictive modeling
to XCS are completely open at present. The benefits
include faster learning along the lines of Dyna, but
incorporating generalization. Other benefits may
stem from the fact that the state classifier system, if it
involves significant generalization in its conditions
and expectons, would yield a sort of simplified re-
coding of E, that is, a simplified description of the
state landscape. How this might be useful is not
clear at present.

5 INTERNAL STATE

At this point we must disturb the neat X x A ⇒ P
environment model by introducing the
Markov/non-Markov distinction. An environment
has the Markov property if the prediction of p given x
and a cannot be improved by knowledge of states
preceding x. Strictly speaking, this is the Markov
property with respect to payoff. Such an environ-
ment might or might not be Markov with respect to
next states. But, for simplicity, by Markov we shall
mean Markov with respect to payoff. An environ-
ment is non-Markov if it is not Markov.

The Markov/non-Markov distinction is crucial in
reinforcement learning because it says whether an
environment can or cannot be predicted on the basis
of current input information. If so, the system can
rely entirely on that information. If not, it must re-
member, or encode, something about the past and
use that in conjunction with current input informa-
tion in order to make correct decisions. If E is
Markov (and deterministic), its payoff properties can
be represented by X x A ⇒ P. If E is non-Markov,
the mapping is not well defined because the p result-
ing from (x,a) is not predictable.

A very simple example of the distinction is the fol-
lowing (Lin 1993). Imagine a gift packing task in
which a gift must be placed in an initially closed box
after which the box is wrapped. Initially the box is
closed with no gift inside and must be opened and
filled. Later, with gift inside and again closed, it
must be wrapped. In both cases, the system’s sen-
sors see a closed box, but the actions called for are
different. If the system only sees the box, it can’t
perform correctly unless it remembers what it has
done, or has made some other mental note, i.e., un-
less it maintains some form of internal state. The
environment is non-Markov. If, however, the
system’s sensors include one that weighs the box,
then for a high enough gift to box weight ratio, the
environment becomes Markov and no internal state
is required.

Note how the distinction very much depends on the
system’s sensors. Environments can be ‘‘made’’
Markov if there are enough sensors. Markov envi-
ronments will become non-Markov if the number of
sensors (or their ability to make distinctions) is re-
duced. Thus it is not the environment itself that is
Markov or non-Markov, but the environment as
sensed by the system. In speaking of an environ-
ment as Markov or non-Markov, we shall mean the
environment in conjunction with the system’s sen-
sors.

How can XCS learn non-Markov environments? In
reinforcement learning, there are two major ap-
proaches. One, the ‘‘history window’’, extends the
input vector to include inputs from previous time-
steps, enlarging the effective state space until the
mapping X’ x A ⇒ P, with X’ the extended space,
becomes well-defined, and the problem is effectively
Markov. Though X’ grows exponentially with the
length of the history window, this approach can be
satisfactory if the window is very short. The other
approach attempts to identify and remember past
events that will disambiguate X x A ⇒ P, and these

are combined with the current x to make decisions.
Some versions of this approach employ recurrent
neural networks. The problem here is that the com-
plexity of the search is again exponential with dis-
tance into the past.

Holland’s classifier system contains an internal mes-
sage list, where information from one time-step can
be posted by a classifier and then be read by another
classifier on a later time-step. It was hoped that clas-
sifiers would evolve whose postings and readings
led to high performance in situations where past in-
formation was needed (i.e, in non-Markov environ-
ments). Holland’s idea was neither a history-
window approach, nor one that searched purpo-
sively for critical past information. Rather, the ap-
proach was Darwinian, relying on variation and se-
lection. Unfortunately, because of the complexity of
the message list structure, and alsoin our
opinionbecause fitness was based on ‘‘strength’’
and not accuracy as in XCS, Holland’s system
showed only limited success on non-Markov prob-
lems (Robertson & Riolo 1988, Smith 1991).

Wilson (1994) suggested that coupling between post-
ing and reading classifiers would be enhanced if the
internal state were embodied in a simple bit register
instead of a list of messages. He observed that in
many problems, decisions needing past information
often require only one or a few bits. Classifier struc-
ture could take the form,
<external condition><internal condition>:
<external action><internal action> ⇒ <prediction>.
The internal condition would apply to the internal
bit register; the internal action would set, reset, or
ignore bits there.

The suggestion was taken up in Cliff & Ross (1994).
They added an internal register to Wilson’s (1994)
ZCS system (a classifier system with fitness based
traditionally on strength). The resulting system,
ZCSM, performed quite well, though not optimally,
in several simple non-Markov mazes. Examination
of evolved populations showed that ZCSM indeed
evolved classifiers that employed the internal regis-
ter to discriminate the mazes’ ‘‘aliased’’ (indistin-
guishable) states.

Lanzi (1998a) obtained improved results with
XCSM, which added an internal register to XCS, but
more difficult mazes could still not be learned opti-
mally. In further work (Lanzi 1998b), he proposed
that exploration of internal actions should be carried
out differently than exploration of external actions.
He found that too much exploration of internal ac-
tions would prevent the stable formation of

classifiers that acted appropriately on the internal
register contents. To use the register effectively im-
plies that the system must both create an appropri-
ate internal ‘‘language’’ (of register settings) and
also learn how to interpret that language. Lanzi ex-
perimented with XCSMH, a modified XCSM in
which the internal register settings (the ‘‘language’’)
were explored only by the genetic algorithm and
were not explored as part of the action selection pro-
cess. The language was thus explored more slowly
than its interpretation. This resulted in optimal per-
formance on more difficult (more aliased states)
mazes. In further work (Lanzi 1999b), he discovered
that still improved performance would occur if the
internal register was somewhat redundant, that is,
had size somewhat greater than the minimum num-
ber of bits needed in principle to disambiguate the
environment’s aliased states. This last result con-
firms, in classifier systems, a similar result observed
by Teller (1994) who used an internal register with
genetic programming.

Cliff & Ross (1994) worried that systems using an
internal register would not scale up well, because
the amount of needed exploration would grow ex-
ponentially with the register size. Lanzi’s results
suggest this may not be a concern, since better per-
formance results from less internal exploration than
might have been thought. In effect, it is not neces-
sary to explore all possible settings of the register.
Many settings will be interpretable to yield high or
optimal performance; it is only necessary to find one
of them; Smith (1991) makes a related observation.

Good learning in non-Markov environments is per-
haps the largest outstanding problem in RL.
Progress using an internal register with XCS sug-
gests this approach should be pursued vigorously.
Most important would seem to be to study further
how best to do ‘‘internal exploration’’, to under-
stand better the complexity implications of the regis-
ter and its size, and of course to investigate increas-
ingly difficult environments. Learning of hierarchi-
cal behavior is another outstanding RL problem. It is
possible that internal ‘‘languages’’ will evolve that
use the register in a hierarchical manner; i.e., certain
bit positions will encode longer-term contexts while
others encode behavioral details. This might open
the way to realization of ‘‘hierarchical classifier sys-
tems’’ (Wilson 1987).

6 NOISE AND UNCERTAINTY

The vast majority of classifier system research has
used noiseless, deterministic environments, but

these ideal properties do not hold in many potential
applications. Robotic sensors are often extremely
noisy, as are the data in most ‘‘data mining’’ prob-
lems. Besides noise inherent in the environment,
XCS is vulnerable to noise-like uncertainty in two
other respects. First, if the environment is non-
Markov and the system has insufficient internal
state to disambiguate it, the system’s classifiers will
not be able to arrive at stable predictions. Classifier
errors will not go to small values or zero and this
error will be indistinguishable from error that re-
sults from ‘‘true’’ environmental noise. Second, if a
classifier is overgeneral, it will make prediction er-
rors that are also not distinguishable from the other
kinds, at least until the overgenerality is eliminated.

Since in XCS fitness is based on accuracy, it is impor-
tant to determine XCS’s sensitivity to external noise.
Lanzi & Colombetti (1999) tested XCS in Markov en-
vironments where the system’s probability of carry-
ing out its intended action was less than 1.0. Specifi-
cally, in a grid-world maze, the system would with
probability ε ‘‘slip’’ to one or the other of the two
cells adjacent to its intended destination cell. Thus
the system was subject to a kind of action noise. For
values of ε up to about 0.25, Lanzi & Colombetti
found that performance was nearly as good as XCS
without generalization (no #’s) or tabular Q-
learning, all subject to the same action noise. Thus
even with generalization ‘‘turned on’’, XCS was able
evolve classifiers as accurate as those evolved when
generalization was not enabled. The system was
able to eliminate errors due to overgeneralization
even in the presence of external noise over which it
had no control. However, at an ε of 0.50, perfor-
mance broke down drastically.

The authors then introduced a technique that re-
sulted in nearly optimal performance even when ε
was 0.50. A new parameter µ was given each classi-
fier for keeping an estimate of the minimum predic-
tion error among the classifiers in its action set [A].
Each time a classifier takes part in [A], it looks at the
other classifiers in [A] and notes the value of the
prediction error parameter of the classifier with the
lowest such parameter. Our original classifier then
updates its µ parameter using the value just identi-
fied. Finally, when it updates its own prediction er-
ror parameter, it uses not its current prediction er-
ror, but that error minus its current value of µ. The
procedure is based on the heuristic that the mini-
mum prediction error in the action set is a good esti-
mate of the actual external noise, since all the classi-
fiers are subject to it. Subtracting µ out means that
each classifier’s error estimate approaches the value

it would have in a noiseless environment, so that
overgeneralization errors areevidently elimi-
nated and performance is maintained. The technique
is a new kind of example of how the population-
based nature of XCSthe fact that it supports mul-
tiple hypotheses for each situationcan markedly
aid the search.

It is important to test the technique on the other
kinds of environmental noise, namely noise in the
sensors and in external payoffs. Both are important
for prediction from real data, since data sets used for
learning will often contain errors in data (sensor)
values and inconsistencies in outcomes (payoffs).
Lanzi & Colombetti’s technique promises to be valu-
able in learning predictions from noisy data while
retaining the ability to detect generalizations, prop-
erties which will be of great interest to human users
of XCS in data applications.

7 XCS THEORY AND TECHNIQUE

7.1 GENERALIZATION

From the beginning, XCS has displayed a strong ten-
dency to evolve classifiers that detect and accurately
represent the categorical regularities of its environ-
ment. This is based, first, on making fitness depend
on accuracy of prediction (in contrast to ‘‘strength’’
in the Holland framework). Second, it depends on
the use of a niche GA (Booker 1982), which has the
consequence that of two equally accurate classifiers
where one matches a subset of the states matched by
the other, the more general classifier will win out
because it has more reproductive opportunities (for
a detailed discussion, see Wilson (1995)).

The drive to evolve accurate, maximally general
classifiers at the same time as it learns the mapping
X x A ⇒ P suggests that XCS tends to evolve popu-
lations that consist of the smallest possible set of
non-overlapping classifiers, thus representing the
environment’s payoff landscape optimally. Kovacs
(1997a) termed this the XCS Optimality Hypothesis,
and demonstrated it for Boolean multiplexer prob-
lems. It is important to explore this direction fur-
ther, in particular by trying Boolean problems which
are less symmetrical than the multiplexers. In the
multiplexer function, each categorical regularity
covers an equal portion of the input domain. As a
result, for random inputs, all parts of the population
are updated and subjected to GA processes at ap-
proximately the same rate. For a function with cat-
egorical regularities of unequal size, this equality of
rates would not hold and one can expect that XCS’s
functionality will be affected to a degree that should

be determined. A similar kind of test would be
achieved with the multiplexer by changing to an in-
put distribution that was not uniformly random.

XCS’s tendency to evolve accurate, maximally gen-
eral classifiers is not guaranteed. Situations can
arise, particularly in sequential problems using dis-
counting, in which overgeneral classifiers may fail to
be eliminated, even though their accuracy is low.
Elimination depends on the existence of a more ac-
curate competitor classifier in every action set where
the overgeneral occurs. Normally this will be the
case, due to the genetic mechanisms. However, if
populations are too small relative to the number of
distinct categorical regularities in E, action set sizes
will be small so that the GA will be slow to generate
the competitors and an overgeneral may not be
eliminated before it causes trouble, i.e., before action
errors occur that in the worst case bring a break-
down of overall performance.

Overgenerals will also not be eliminated if the errors
in an action set are so small that the system’s ac-
curacy mechanism cannot differentiate the fitnesses.
Discounting can have this effect, since the
predictionsand thus errorsbecome smaller far-
ther from sources of external payoff. XCS originally
defined accuracy as a negative exponential function
of prediction error. If one very small error is never-
theless twice as big as another one in the same ac-
tion set, an exponential function will not differenti-
ate them well since the ratio of two exponentials is
an exponential of the difference of their arguments,
and may be small. The problem is substantially re-
duced by changing the accuracy function to a nega-
tive power function of the error (Wilson 1998).
Then, if one error is twice another, the accuracy ratio
is a power of two, independent of the actual error
values.

Despite larger populations and an improved ac-
curacy function, performance can still sometimes
break down due to failure to eliminate overgenerals
rapidly enough. For such ‘‘emergencies’’, Lanzi
(1997) developed a mechanism termed specify. Ev-
ery action set is tested to see if its average error rela-
tive to the population average error exceeds a
threshold. If so, a new classifier is added to the ac-
tion set that covers the current input and whose con-
dition has a predetermined probability of don’t care
positions. The intention is to add a fairly specific
classifier to the high-error action set that will com-
pete in accuracy with the overgeneral classifiers that
are probably present. Specify works well in that
performance breakdowns due to overgeneralization
are eliminated. At the same time, because it acts

locally, specify does not restrain the system from
forming accurate generalizations where warranted.

In the first work on XCS, the GA occurred in the
match set [M]. Later (Wilson 1998) it was moved to
the action set [A]. The result was that in certain
problems the population sizein terms of
macroclassifiersevolved to be smaller. The
smaller populations contained the same accurate
general classifiers as before, but there were fewer
more-specific versions of these present, and fewer
inaccurate classifiers. The apparent reason for this
improvement is fairly subtle.

Consider a match set, and suppose that the state x
being matched participates in two categorical regu-
larities of E: ({x}1,a1) → p1 and ({x}2,a2) → p2.

Suppose classifiers C1 and C2 in [M] perfectly repre-
sent these regularities. That is, the condition of C1
exactly fits{x}1 and the condition of C2 exactly fits

{x}2. Both classifiers are accurate and maximally

general. What if the GA crosses them? If the two
conditions are identical, then the offspring condi-
tions will be identical to the parent conditions.
However, if the two conditions are not identical, the
offspring conditions may be different from those of
both of the parents (e.g., cross #1 and 1#). Since by
hypothesis the parents were accurate and maximally
general, the offspring, if different from the parents,
will not be and will thus constitute a kind of cross-
over ‘‘noise’’ that the system will have to eliminate.
Thus even if the system has found accurate, maxi-
mally general classifiers that match the present in-
put, the action of crossover willif {x}1 and {x}2

differcontinue to generate suboptimal classifiers.

Suppose however that the GA, and thus crossover,
occurs in [A] instead of [M]. Now only one of C1
and C2 is present and not the other. Since they can-
not be crossed, the offspring just mentioned will not
be formed and do not have to be eliminated. C1
(suppose it’s the one present) will still cross with
more-specific and more-general versions of itself
that may be present too in the action set; the same
crosses would occur in the match set. But the
‘‘noise’’ due to crosses with C2 will not. The argu-
ment is clearest in an extreme case: assume the
match set consists only of C1 and C2.

The reduction in population size due to moving the
GA to [A] was observed in problems where, if a clas-
sifier was accurate and maximally general, it was
often not the case that another classifier with a dif-
ferent action but the same condition would also be

accurate and maximally general (another way of
saying that C1’s condition is different from C2).
However, in problems where this was the case (con-
ditions of C1 and C2 always the same), the popula-
tion size was unchanged in moving the GA from [M]
to [A]. Thus the shift to the action set appears justi-
fied both in principle and experimentally. But fur-
ther examination in both respects is needed to un-
derstand fully what is happening.

If the GA does occur in the action set, what can we
say that crossover is actually doing? Note that all
classifiers in both the match and action sets must
match the input. However, all classifiers in the ac-
tion set have the same action. Thus the GA may be
regarded as searching for the besti.e. most general
and accurateclassifier to represent the categorical
regularity ({x},a) → p that the present (x,a) pair be-
longs to. The classifiers in the action set have condi-
tions of varying specificity. They exist somewhere
along the line between completely specific and com-
pletely general. Crossover produces offspring that
in general occupy points on the line different from
their parents. Clearly the GAusing crossover, mu-
tation, and selectionis searching along this line,
driven by a fitness measure, accuracy, that is
strongly correlated with specificity. This is the heart
of XCS’s discovery process, and a detailed theory is
definitely called for.

Also called for is a theory of how fitness based on
accuracy interacts with the reproductive op-
portunity afforded by greater generality to drive the
system toward classifiers that are both accurate and
maximally general. Wilson (1995) presented a heu-
ristic argument: of two equally accurate classifiers,
the more general one would win out because being
more general it occurs in more action sets and thus
has greater chance to reproduce. But the theory
needs to be put on a quantitative basis.

Wilson (1998) reported a secondary generalization
method, subsumption deletion, that further reduces, or
‘‘condenses’’, population size. The primary method,
as discussed above, causes classifiers to generalize
up to the point where further generalization (e.g.,
addition of #’s in the traditional syntax) would result
in errors. However, the process may actually stop
short of this point, since a formally more general
classifier (more #’s) will only win out if it can match
more states of the environment (yielding more re-
productive opportunities). But those states may not
actually be present in E, i.e., E may not contain all
the states permitted by the encoding. So the system

will not evolve classifiers that are as formally gen-
eral as they could in fact be.

To see this, suppose E contains the categorical regu-
larity ({000,001},a) → p1. Suppose E also contains

(100,a) → p2, where p2 and p1 are different. Suppose
further that the states 010 and 011 do not occur in E.
The classifier 00#:a ⇒ p1 is clearly accurate. So also is

0##:a ⇒ p1. The second classifier is more general,
but since it matches no more actual states than the
first, it will not win out reproductively, and the two
will coexist in the population. Note, however, that
the classifier ###:a ⇒ p1, being inaccurate, will not
survive. (See also the discussion in Lanzi (1999c)).

In many problems, it is desirable to end up with
classifiers that are as formally general as possible
while still being accurate. The resulting population
is smaller, and the key differentiating variables (e.g.,
the first bit in the example above) are more per-
spicuous. Subsumption deletion accomplishes this
by checking, whenever a new classifier is generated
by the GA, whether its condition is logically sub-
sumed by the condition of an accurate classifier al-
ready in the action set. If so, the new classifier is
abandoned and not added to the population. Sub-
sumption deletion is a powerful addition to the pri-
mary generalization mechanism, but it is somewhat
risky. For each categorical regularity, it tends to
eliminate all but the formally most general, accurate
classifier. If the environment should change, such
that certain states (e.g., 010 and 011 above) now oc-
cur, that classifier could fail drastically resulting in a
breakdown of performance. Retaining classifiers
like 00#:a ⇒ p1 abovei.e., using only the primary

processprevents this.

7.2 CONNECTION WITH RL

XCS’s learning algorithm is a straightforward adap-
tation of basic Q-learning. The prediction of each
classifier in the action set is updated by the current
reward (if any) plus the discounted value of the
maximum system prediction on the next time-step.
The system prediction for a particular action is a
fitness-weighted average of the predictions of each
classifier in the match set that advocates that action.
The maximum system prediction is the maximum,
over the match set, of the system prediction for each
action. The essential difference with Q-learning is
that classifierthat is, rulepredictions are up-
dated from predictions of other rules. In Q-learning,
action-valuesthat is, predictions for pairs

(x,a)are updated from other action-values. XCS’s
memory is contained in rule sets, whereas Q-
learning’s memory is stored in a table with one entry
for each state-action pair.

Of course, Q-learning-like algorithms have also been
employed, for example, in neural-net learning. But
it is most interesting to compare XCS with tabular
Q-learning. That is the only case for which conver-
gence proofs are known. In addition, there is an im-
portant sense in which XCS’s algorithm is like tabu-
lar Q-learning, but with generalization over the en-
tries of the table.

If XCS is applied to a problem, but with generaliza-
tion turned off (no initial #’s, and none introduced
by mutation), the result will be a set of classifiers
corresponding to the equivalent Q-learning table,
except that for most state-action pairs that do not
actually occur in E there will be no classifier. Thus,
without generalization, XCS will in effect build the
Q-learning state-action table ‘‘from scratch’’, but
only for (x,a) pairs that actually occur in E. Perfor-
mance, apart from some noise introduced by the
GA, will be identical to that of tabular Q-learning. If
the GA is completely turned off, and classifiers are
only created by covering, performance will be the
same as for tabular Q-learning, and the final popula-
tion will correspond precisely to Q-table entries that
actually occur in E.

With generalization turned on, performance by XCS
will normally reach the same level as for tabular Q-
learning, but will take longer due to errors as ac-
curate general classifiers are discovered and empha-
sized. If the problem contains categorical regulari-
ties and these can be represented by XCS’s syntax,
then generalization will result in a population (in
macroclassifiers) that is smaller than the correspond-
ing Q-table, often by a significant factor. If one ex-
amines classifier predictions once the system has es-
sentially stopped evolving, they are found to equal
the predictions of the corresponding Q-table. Thus
while no proofs of convergence are available, em-
pirically XCS converges like Q-learning, but with
generalization as a bonus. The same sort of parallel
might hold with other reinforcement learning algo-
rithms, provided XCS’s update procedures were cor-
respondingly modified. (See Kovacs 1999 and Lanzi
1999b for detailed discussion of the relation between
XCS and Q-learning.)

7.3 COMPLEXITY

Real-world problems often have very large state
spaces. Reinforcement learning methods such as Q-
learning that depend on tables of values scale

exponentially with the dimensionality of the state
space. Not only does the table grow exponentially,
but so does the time needed to fill in the values.
Tabular Q-learning is not sensitive to categorical
regularities in the environment and so cannot avoid
the exponential explosion. But research with XCS
has suggested that because it detects the
regularitiesand when it can represent them
syntacticallyXCS’s learning complexity is depen-
dent not on the dimensionality of the space, but on
the complexity of the underlying regularities. In this
respect it may differ significantly from other ap-
proaches to handling large state-spaces such as ra-
dial basis functions, tiling (CMAC) methods, and
neural networks, whose complexities are ultimately
tied to state-space size (Sutton & Barto 1998).

Information about XCS’s learning complexity comes
from experiments with the family of Boolean multi-
plexer functions (Wilson 1998). Three functions were
learned: the 6-, 11-, and 20-multiplexers, where the
numbers indicate the lengths of the input bit-string l
or in other words, the dimensionality of the state
space. The disjunctive normal forms (DNF) for the
functions contain, respectively, 4, 8, and 16 terms.
Associated with each term are exactly four payoff
regularities, so there are, respectively, 16, 32, and 64
payoff regularities in the three spaces. An example
of a payoff regularity for the 6-multiplexer is
({000000, 000001, 000010, 000011, 000100, 000101,
000110, 000111}, 0) → p, where p is the payoff associ-
ated with a correct decision. The accurate, maxi-
mally general classifier corresponding to this regu-
larity is 000###:0 ⇒ p.

XCS reached 100% performance on the three func-
tions after seeing, on average, 2,000, 10,000, and
50,000 random input strings. Final population sizes
in macroclassifiers were, respectively, 55, 148, and
345. In contrast, the state space sizes are, respec-
tively, 64, 2,048, and 1,048,576, growing exponen-
tially. If one infers from these limited data that the
learning times grow by a factor of five from one
multiplexer to the next, then the times can be fit to a

function cgp, where g is the number of regularities
in the function, p = log 5 = 2.32, and c = 3.22. Thus
the learning time complexity would be a low power
of the number of regularities in the space.

A very tentative theory of this result can be pro-
posed. The search for a set of classifiers that ac-
curately represent the regularities may involve two
factors. One is the number of regularities itself. The
other is the length of the classifier condition, because
each position of the condition must be ‘‘set’’

correctly. The length of the condition is l, but the
number of regularities is approximately propor-
tional to l  it approaches an exact proportionality
in the limit of large multiplexers. It seems reason-
able to conclude that the search time should depend
on product of these two factors, which would be
consistent with the function just proposed.

Further research is needed to test these ideas. In
particular, XCS should be applied to larger multi-
plexers, and to other function families. At this point,
however, XCS promises to scale up well in problems
for which its representational syntax is appropriate.

7.4 TECHNIQUES

Traditionally, classifier system populations contain
many classifiers that, due to reproduction without
associated crossover or mutation, are structurally
identical, i.e., they have the same conditions and ac-
tions. Wilson (1994) introduced macroclassifiers in
order to eliminate this redundancy as well as reduce
processing time and save storage. In a population of
macroclassifiers, each newly generated classifier is
examined to see if a structurally identical classifier
already exists. If so, the existing classifier’s numer-
osity parameter is increased by one and the new
classifier is abandoned. If not, the new classifier is
added to the population with its numerosity initial-
ized at one. XCS uses a macroclassifier population,
but all operations are otherwise conducted as
though the population consists of ordinary classi-
fiers (‘‘microclassifiers’’); that is, numerosities are
taken into account. In a macroclassifier population,
the sum of the numerosities, N, equals the number
of underlying microclassifiers and is a constant. N is
the number that in traditional systems denotes the
population size.

A population of macroclassifiers consists entirely of
structurally unique individuals. As such it permits a
much better view of the system’s ‘‘knowledge’’ than
does a traditional population. Classifiers with high
numerosity tend to be those with maximal accurate
generalizations, so the most significant knowledge
can be determined readily by sorting the population
by numerosity (Kovacs 1997a). Furthermore, the
size of the population in macroclassifiers measures
the system’s ability to detect and represent the regu-
larities in E. The macroclassifier idea is in fact what
permits realization of the improvement in space
complexity that XCS achieves through generaliza-
tion. A traditional population would maintain size
N regardless of the generalizations within it.

Kovacs (1996) compared the behavior of XCS with
and without macroclassifiers on the 6-multiplexer

problem. He found no significant difference in per-
formance. A slight improvement in system predic-
tion error using macroclassifiers was explainable
since when a new classifier already exists it is not
introduced into the population, so its arbitrary initial
parameters can’t affect system predictions. It there-
fore appears that the macroclassifier technique is
valid and uniformly beneficial.

Whenever XCS generates a new classifier, either
through the GA or covering, a classifier is effectively
deleted in order to maintain the microclassifier
population size at N. Selecting a classifier for dele-
tion is done as though the population consists of mi-
croclassifiers. The actual ‘‘deletion’’ is carried out by
simply decrementing some classifier’s numerosity
by one; if the classifier’s numerosity is exactly one, it
is removed from the population.

Kovacs (1997b) studied techniques for making the
deletion selection and introduced a new one that is
superior. Previously (Wilson 1995), two techniques
had been used. Each classifier kept an estimate of
the number of classifiers in the action sets it oc-
curred in. In the first technique, the probability of
deletion was proportional to the estimate. In the
second technique, it was proportional to the esti-
mate but multiplied by a small fraction if its fitness
was below the population average fitness by a cer-
tain factor. Use of the action set size estimate tends
to maintain action sets at about the same size, thus
equally distributing system resources (classifiers).
The reduction factor in the second technique was
designed to penalize very low fitness classifiers and
eliminate them rapidly.

The second technique worked better than the first in
that it resulted in smaller population sizes. But it
often deleted newly generated classifiers before they
had a chance to gain fitness. Kovacs’s new tech-
nique resolved this by combining the two previous
ones. Each classifier was given an additional param-
eter keeping track of the number of times it had
been a member of an action set. In the Kovacs tech-
nique, if that number was less than, e.g., 20, the
probability of deletion was as in the first old tech-
nique. If the number was equal to or greater than 20,
the second old technique was used. The new tech-
nique exhibited the advantages of the earlier two
without their disadvantages.

8 CONCLUSIONS

We have reviewed the current state of XCS classifier
system research, identifying the main accomplish-
ments and suggesting future directions. A notation

for the environment’s predictive and categorical
regularities was introduced to aid the discussion.

Promising areas for further research include: (1) ex-
tending condition syntax so as to accept input vec-
tors with continuous, ordinal, nominal, and mixed
components, and to enable representation of a
greater range of environmental regularities; (2) con-
tinued exploration of the full representational gener-
ality of s-classifiers; (3) experimentation with XCS
systems that predict the next state, so as to develop
more complete models of the environment; (4) con-
tinued work on internal state to determine the scope
of the register method and its potential for support-
ing hierarchical behavior; (5) further research on fil-
tering noise of all types, with applicability to learn-
ing from real data sets; (6) continued basic work on
accurate generalization, aimed at understanding all
relevant phenomena; (7) development of a "schema
theory" for XCS’s genetic search process; (8) explo-
ration of RL techniques other than Q-learning in
XCS; (9) further investigation of XCS’s learning com-
plexity experimentally and theoretically; and (10)
continued examination of the basic XCS component
algorithms in search of improvements.

Important areas not discussed because next to noth-
ing is presently known include: (1) use of continu-
ous actions, e.g., turn exactly 34 degrees; and (2) bas-
ing XCS on continuous time, instead of discrete
time-steps. Existing RL work in both of these areas
could be brought to bear. In addition, it is important
to elucidate the relationship between XCS and tradi-
tional classifier systems (Kovacs 1999).

XCS is a new kind of classifier system showing sig-
nificant promise as a reinforcement learner and ac-
curate generalizer. Its full potential is just beginning
to be explored.

References

Booker, L, (1982). Intelligent behavior as an adaptation
to the task environment, Ph.D. Dissertation (Com-
puter and Communication Sciences). The Uni-
versity of Michigan.

Cliff, D. and Ross, S. (1994). Adding temporary
memory to ZCS. Adaptive Behavior 3(2), 101-150.

Goldberg, D. E., Korb, B., and Deb, K. (1989). Messy
genetic algorithms: motivation, analysis, and first
results. Complex Systems 3, 493-530.

Holland, J. H. (1986). Escaping brittleness: the pos-
sibilities of general-purpose learning algorithms

applied to parallel rule-based systems. In R. S.
Michalski, J. G. Carbonell & T. M. Mitchell (Eds.),
Machine learning, an artificial intelligence approach.
Volume II. Los Altos, California: Morgan Kauf-
mann.

Holland, J. H. (1990). Concerning the emergence of
tag-mediated lookahead in classifier systems.
Physica D, 41, 188-201.

Kovacs, T. (1996). Evolving Optimal Populations with
XCS Classifier Systems, MSc. Dissertation, Univ. of
Birmingham, UK.

Kovacs, T. (1997a). XCS classifier system reliably
evolves accurate, complete, and minimal repre-
sentations for Boolean functions. In Roy,
Chawdhry and Pant (Eds), Soft Computing in En-
gineering Design and Manufacturing (WSC2),
Springer-Verlag London.

Kovacs, T. (1997b). Steady state genetic algorithm dele-
tion techniques. Internal Report, School of Com-
puter Science, University of Birmingham.

Kovacs, T. (1999). Unpublished study for Ph.D. The-
sis.

Koza, J. R. (1992). Genetic Programming. Cambridge,
MA: The MIT Press/Bradford Books.

Lanzi, P. L. (1997). A study of the generalization ca-
pabilities of XCS. In T. Baeck, ed., Proceedings of
the Seventh International Conference on Genetic Al-
gorithms (ICGA97), Morgan Kaufmann, San Fran-
cisco, CA.

Lanzi, P. L. (1998a). Adding memory to XCS. Pro-
ceedings of the IEEE Conference on Evolutionary
Computation (ICEC98), to appear.

Lanzi, P. L. (1998b). An analysis of the memory
mechanism of XCSM In J. Koza et al (eds.), Pro-
ceedings of the Third Annual Genetic Programming
Conference, San Francisco, CA: Morgan Kauf-
mann, 643-651.

Lanzi, P. L. (1999a). Extending the representation of
classifier conditions, part I: from binary to messy
coding. GECCO-99, accepted.

Lanzi, P. L. (1999b). Reinforcement Learning with Clas-
sifier Systems. PhD Thesis, Politecnico di Milano.

Lanzi, P. L. (1999c). An analysis of generalization in
the XCS classifier system. Evolutionary Computa-
tion, accepted.

Lanzi, P. L. and Colombetti, M. (1999). An extension
to the XCS classifier system for stochastic envi-
ronments. GECCO-99, accepted.

Lanzi, P. L. and Perrucci, A. (1999). Extending the
representation of classifier conditions, part II:
from messy coding to s-expressions. GECCO-99,
accepted.

Lin, L.-J. (1993). Reinforcement Learning for Robots Us-
ing Neural Networks. Ph.D. Dissertation (School of
Computer Science). Carnegie Mellon University.

Riolo, R. L. (1991). Lookahead planning and latent
learning in a classifier system. In J.-A. Meyer & S.
W. Wilson (eds.), From Animals to Animats: Pro-
ceedings of the First International Conference on
Simulation of Adaptive Behavior (pp. 316-326).
Cambridge, MA: MIT Press.

Robertson, G. G. and Riolo, R. L. (1988). A tale of
two classifier systems. Machine Learning, 3, 139-
159.

Smith, R. E. (1991). Default Hierarchy Formation and
Memory Expoitation in Learning Classifier Systems.
Ph. D. Dissertation, The University of Alabama,
Tuscaloosa, Alabama.

Stolzmann, W. (1998). Anticipatory classifier sys-
tems. In Proceedings of the Third Annual Genetic
Programming Conference, J. Koza et al (eds.), San
Francisco, CA: Morgan Kaufmann, 658-664.

Sutton, R. S. (1991). Reinforcement learning archi-
tectures for animats. In J.-A. Meyer & S. W. Wil-
son (eds.), From Animals to Animats: Proceedings of
the First International Conference on Simulation of
Adaptive Behavior (pp. 288-296). Cambridge, MA:
MIT Press.

Sutton, R. S. and Barto A. G. (1998). Reinforcement
Learning: An Introduction. Cambridge, MA: The
MIT Press/Bradford Books.

Teller, A. (1994). The evolution of mental models.
In K. E. Kinnear, Jr. (ed.), Advances in Genetic Pro-
gramming. Cambridge, MA: The MIT Press/
Bradford Books.

Watkins, C. J. C. H. (1989). Learning from Delayed Re-
wards. Ph.D. Dissertation, Cambridge University.

Wilson, S. W. (1987). Hierarchical credit allocation in
a classifier system. Proceedings of the Tenth Inter-
national Joint Conference on Artificial Intelligence
(pp. 217-220). Los Altos, CA: Morgan Kaufmann.

Wilson, S. W. (1994). ZCS: a zeroth level classifier
system. Evolutionary Computation 2(1): 1-18.

Wilson, S. W. (1995). Classifier fitness based on ac-
curacy. Evolutionary Computation 3(2): 149-175.

Wilson, S. W. (1998). Generalization in the XCS clas-
sifier system. In Proceedings of the Third Annual
Genetic Programming Conference, J. Koza et al
(eds.), San Francisco, CA: Morgan Kaufmann,
665-674.

Wilson, S. W. (1999). XCSR, a classifier system with
real-vector inputs. In preparation.

