Organizational Learning

Within A Learning Classifier System

Jason R. Wilcox
Department of Computer Science

University of lllinois At Urbana-Champaign

IiGAL Report No. 95003
May 1995

Iinois Genetic Algorithms Laboratory (IIiGAL)
Department of General Engineering
University of lllinois at Urbana-Champaign
117 Transportation Building
104 South Mathews Avenue
Urbana, IL 61801

(©Copyright by
Jason R. Wilcox

1995

ORGANIZATIONAL LEARNING WITHIN A LEARNING CLASSIFIER SYSTEM

BY
JASON R. WILCOX

S.B., Massachusetts Institute of Technology

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Department of Computer Science
in the Graduate College of the
University of lllinois at Urbana-Champaign, 1995

Urbana, llinois

Abstract

This thesis recasts the debate between Michigan-style and Pitt-style classifier systems to a
debate on appropriately sizing organizations within a learning classifier system. Motivated by
the economic study of transaction costs, an organizational classifier system (OCS) combining
explicit use of multiple reputation values and organization sizing operators better distinguishes
parasitic (less than optimal) classifiers than a simple classifier system (SCS). The results show
that by building a system that autonomously adjusts the degree of individual to collective
behavior, it is possible for it to be both efficient and resilient to problem difficulty.

iii

Acknowledgments

I thank my parents, although no amount of thanks could sufficiently repay their unfailing
love and support.

I thank Dr. David Goldberg, my adviser, for his input, support, and creative ideas.

I thank Kevin Carmody and Jeffrey Horn for their friendship and support.

I thank Rebecca Robinson for taking care of things while I worked on this thesis.

Support for this work was provided by the U.S. Air Force Office of Scientific Research under
Grant No. F49620-94-1-0103 and from the National Aeronautics and Space Administration

with Grant No. NGT-50873.

iv

Table of Contents

1 Introduction o

2 Organizational Growth

2.1 An Introduction to Transaction Costs
What Are Transaction Costs? o o L
Mechanisms That Reduce Transaction Costs

2.2 A Study of Organization Growth
Agents and Organizations Lo o
The Fitness Function
Organizational Operators
Selection L e e e

2.3 Results of the Organizational Growth Model
Initialization Strategies e
Experiment 1: Comparing Operators,
Experiment 2: Comparing Fitness Functions
Experiment 3: Comparing Initialization Strategies

2.4 SUMMATY . . . v v e e e e e e e e e e e e

Classifier Systems e
3.1 Individual and Collective Approaches to Classifier Systems
3.2 ASimple LCS 0 o
The Production System
Credit Allocation and Conflict Resolution Schemes
Rule Discovery Using a Genetic Algorithm
The Process of Running the Simplified Classifier System
3.3 Summary ... e e e e e e

Autonomous Organizational Learning
4.1 A Discussion on Parasitic Behavior o0 0oL
Parasitic Behavior from Society’s Viewpoint
Parasitic Behavior from the Classifier System Viewpoint
4.2 Testing Environment L e
An Introduction to Memory-Depth Problems
The Memory-Depth-One Problem
Working Sets and Types of Classifiers
4.3 Running the SCS on the Test Environment

29
29
31
32
34
36
37
37

Description of Experiments Lo oo 50

Measuring Performance o o 52

SCS Performance 53

4.4 Using Reputation to Distinguish Parasitic Classifiers 56
4.5 Organizational Classifier System 59
The Production System 59

Credit Allocation and Conflict Resolution 60
Organizational Growth Component 63

4.6 Running the OCS on the Test Environment 65
Important Parameters Lo 65

Two OCS Models o e 67

Results o o 67

Result Summary oL 75

4.7 Improving the OCS e 77
4.8 Summary . . . oo ..o e e e e e e e e e e 80

5 Conclusion e 82
5.1 Summary ... e e e e e e e e 82
5.2 Conclusions L e e e 85
References L 90

vi

List of Tables

3.1

4.1

4.2
4.3

4.4
4.5

4.6

4.7

4.8
4.9

Two ways of representing the same classifier. Note that the symbol § separates
the conditions from the actions in the genotypical representation. 34

Working set of 16 classifiers capable of obtaining the maximum reward from the
ENVITONMEN L e e e e e e e e e e e 47
Working set of 8 classifiers, which fail to cover the 16 possible situations.. 47
Working set of 16 classifiers capable of obtaining the maximum reward from the
environment. Notice that when previous-state messages indicates an A or B, the
classifier sends a B or A action message respectively. The working set obtains
the maximum reward, because whenever the current-state message is A or B, the

rules post B or A next-state messages respectively.00 48
Example types of classifiers relative to an ideal working set. 49
Summary of SCS performance - Notice that for later tests, percent correct de-

creases without a corresponding increase in the number of mistakes. 53
A summary of the uses for ST reputation and LT reputation for both classifiers

and organizations. L 63
Summary of the constants and their values used in each run. 67
Summary of Vertical OCS and SCS performance. 69
Summary of the Vertical OCS performance on Test 4. 75

vii

List of Figures

2.1
2.2

2.3

2.4

2.5

2.6

2.7

2.8

3.1

3.2

Two classifiers exchanging information and strength.
Transactions: As individuals, the manufacturer, M, and the worker, W, transact
with the outside world alone. As members of an organization, they work as a
team. L e e e
The operator AddOne forms two new pairs of organizations from a parent pair
of organizations (A and B).
Organizational Growth: Fitness function uses linear rewards and polynomial
costs. Fach run is initialized with 100 organizations each containing one agent.
One run uses AddOne/SubOne operator pair, while the other uses Join/Cut
operator PaiT. e e e e e
Organizational Growth: The operators are Join and Cut. Each run is initialized
with randomly sized organizations such that the total number of agents equals
100, . L e
Organizational Growth: The fitness function uses linear rewards and polynomial
costs. The operators are AddOne and SubOne. The run is initialized with 100
organizations each containing one agent.
Organizational Growth: The fitness function uses linear rewards and polynomial
costs. The operators are AddOne and SubOne. The run is initialized with one
organization containing 100 agents. Lo
Organizational Growth: The fitness function uses linear rewards and polynomial
costs. The operators are AddOne and SubOne. The run is initialized with
randomly sized organizations such that the total number of agents equals 100. . .

Tradeoffs between approaches to classifier systems. Individual (I) approaches
converge quickly on simple problems. Collective (C) approaches converge slowly
but are able to solve more complex problems. The proposed organizational (O)
approach should solve complex problems and converge relatively fast..
Overview of the simple classifier system (SCS). The goal is to maximize the
reward signal output by the environment. Classifiers in the rule set match both
messages that have been posted by other classifiers and those posted by the
environment. Credit allocation and conflict resolution determine which matching
classifiers fire. Classifiers selected to fire post internal messages and send action
messages to the environment, resulting in reward signals.

viii

26

3.3

4.1

4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9

Representation of the bucket brigade process. Classifiers, represented by circles,
post messages when their conditions are met by matching previously posted
messages. The arrows from left to right show the flow of messages. At the same
time, strength flows from right to left. In order to fire, a classifier pays a fraction
of its strength to the previous classifier. The last classifier to fire in the chain
receives strength as a reward from the environment.

The classifier matches the current-state message A and the previous-state mes-
sage B. When it fires, it posts the next-state message A (replacing the old
previous-state message) and sends the action message B.
The OCS production system interacting with the environment.
Combined OCS on Test 3 with Period 25 - Mistakes 1 - Convergence 10000. . . .
Combined OCS on Test 5 with Period 25 - Mistakes 5 - Convergence 90000. . . .
Combined OCS on Test 7 with Period 1 - Mistakes 1 - Convergence 10000. Also
included is the results of the SCSon Test 7.
Combined OCS on Test 7 with Period 5 - Mistakes 3 - Convergence 1000.
Combined OCS on Test 7 with Period 25 - Mistakes 3 - Convergence 90000. . . .
Combined OCS on Test 7 with Period 50 - Mistakes 1 - Convergence 75000. . . .
Combined OCS on Test 7 with Period 100 - Mistakes 3 - Convergence 20000.

4.10 Combined OCS on Test 7 with Period 50 - Mistakes 1 - Convergence 5000. . . .
4.11 Combined OCS on Test 7 with Period 100 - Mistakes 3 - Convergence 65000.

X

71
72
72
73
73
76
76

Chapter 1

Introduction

A learning classifier system (LCS) is a rule-based machine learning system that makes use of a
genetic algorithm to discover new rules. John Holland first proposed the LCS in 1971 (Holland,
1971). Since then, many variations on the original system have appeared (Goldberg, 1989).
Much of the debate has been between the Michigan-style, where individual classifiers coded as
individual strings evolve, and the Pittsburgh-style, where the entire rule set coded as a single
string evolves. In a sense, the Michigan and Pittsburgh methodologies approach the same
problem from the endpoints of a continuum from individual to collective behavior.

The central thrust of this thesis is to investigate strategies aimed at improving the per-
formance of classifier systems. In particular, through the exploitation of reputation and the
formation of appropriately sized organizations, an organizational classifier system (OCS) is de-
signed and implemented such that it autonomously finds an effective balance between individual
and collective behavior. A study of transaction costs in economics provides a key to designing

and implementing the necessary mechanisms.

An important transaction cost is the gathering of information (Coase, 1988). For example,
a person wanting to buy a new car must incur a cost to decide which particular car to purchase.
One part of the decision process is the searching for each car’s reputation based on some set of
criteria. Thus, the buyer might choose to purchase the car with the best reputation as defined
by friends or by the local newspaper. Paying attention to easily accessible reputation is cheaper
than performing an in-depth investigation of advantages and disadvantages for each possible
car.

Another strategy for reducing transaction costs is for the agent to join an organization that
provides a highly probable guarantee for some important aspect of decision making (Coase,
1988). For example, a carpenter must incur a cost to learn what to make and to whom to sell.
By accepting employment with a furniture manufacturer, the carpenter not only knows what to
build, but is reasonably sure of a steady income. Thus, becoming a member of an organization
reduces some transaction costs by removing uncertainty.

Using similar strategies, an OCS can be constructed to balance the individual and collective
behavior found in current classifier systems. That balancing is necessary can be determined by
a simple thought experiment. If an individual classifier system (Michigan-style) is applied to a
difficult sequential learning problem, past studies have demonstrated how performance of the
systems becomes dominated by non-productive parasitic rules, often resulting in poor perfor-
mance (Grefenstette, 1987; Smith, 1991). On the other hand, if a collective classifier system
(Pitt-style) is applied to a problem where stimulus-response learning is largely effective, the
collective nature of learning only serves to delay the creation of good rules. This effectiveness-

speed tradeoff is the primary concern of this thesis; it seeks effective performance in minimal

time and uses reputation and appropriate sizing of organizations as the primary tools to achieve
the desired effects.

To accomplish these goals, the thesis starts by presenting a study on the sizing of organi-
zations. Specifically, Chapter 2 presents an overview of transaction costs. Using techniques to
reduce costs, the chapter builds an abstract model which explores the sizing of organizations.
Afterwards, Chapter 3 examines more closely current approaches to classifiers systems. In addi-
tion, Chapter 3 builds a simple classifier system (SCS) which captures the important dynamics
found in classifier systems using an individualistic approach. Tying together techniques to re-
duce transaction costs and the SCS, the thesis builds an organizational classifier system (OCS)
and compares it to the simple classifier system. Chapter 4 begins by defining a problem on
which to test classifier systems. After testing the SCS, the chapter designs and tests an OCS.

In closing, the thesis investigates future research avenues and presents conclusions.

Chapter 2

Organizational Growth

This chapter focuses on mechanisms to size organizations within a classifier system. In partic-
ular, the debate between Michigan-style and Pitt-style classifier systems should be recast to a
debate on the optimal size of organizations of rules within the classifier system. The Michigan
approach keeps track of individual classifiers, while the Pitt approach evolves a population of
organizations each containing a fixed number of classifiers. Neither approach is completely sat-
isfactory. Michigan-style classifiers, while converging more rapidly, fail to learn good solutions
to complex problems, while Pitt-style classifiers solve more difficult problems at relatively high
computation costs. By developing techniques to find appropriately sized groupings or organiza-
tions of classifiers, a classifier system will autonomously favor individual or collective behaviors
as is necessary to solve particular problems.

Transaction costs theory from economics attempts to explain the formation of organizations
within an economic setting. By viewing the interactions of classifiers as transactions, it is
possible to use the theory of transaction costs to aid in the development of organizational

structures within the classifier system. Because classifier systems are complex, researchers

face a myriad of implementation decisions, parameter settings, and experimental design issues.
These characteristics make the isolated investigation of a single facet or small subset of facets
difficult at best. Before attempting to build organizations within a full-fledged classifier system,
this chapter builds an abstract model that focuses on organizational growth.

Section 2.1 introduces the topic of transaction costs. Section 2.2 presents the abstract

model, and Section 2.3 examines the results of using the model.

2.1 An Introduction to Transaction Costs

One goal of this thesis is to invent an autonomous mechanism for forming the appropriately sized
organizations within a classifier system. The field of economics provides a source of inspiration
for such a mechanism through the study of transaction costs. As an early thinker on the
subject, R. H. Coase explains the sizing and formation of organizations from the framework
of transaction costs (Coase, 1988). The basic idea is that the organization exists because it
reduces the overhead transaction costs associated with exchanging goods and services. The
first part of this section works to provide an intuitive understanding of transaction costs within
both an economic market and a classifier system. The second part of this section examines

mechanisms to reduce transaction costs.

What Are Transaction Costs?

To better understand transaction costs, we examine two people in a market. The first person,
the manufacturer, is in charge of building and selling widgets. The second person, the worker,
constructs the actual widgets from raw materials. Whenever the manufacturer contracts with

the worker, a transaction occurs. They exchange currency for labor. What overhead costs exist

Information

~
Classifier ' l Classifier
A\

Strength

Figure 2.1: Two classifiers exchanging information and strength.

for the manufacturer? Some costs are the effort to find the worker, the expense of negotiating the
price for the labor, and the risk of discovering poor craftsmanship. Similar to the manufacturer,
the worker must put forth efforts to find employment and negotiate a price. In addition, the
worker risks that the manufacturer will fail to pay the wages. Associated with all exchanges of
goods and services are a similar set of costs.

Similar to two people in a market, two agents or classifiers in a computational system may
exchange goods and services. Figure 2.1 shows two interacting classifiers exchanging informa-
tion for a payment of strength (see Chapter 3 for details on the workings of classifier systems).
Ideally, the classifier providing information would sell to that particular classifier whose down-
stream actions lead the system to receiving maximum reward. From the information provider’s
viewpoint, two costs are deciding to whom to sell and risking that the buyer fails to lead the
system to gain the maximum reward. At the same time, the buying classifier faces two related
costs. One is the cost of deciding from whom to buy, while the other cost is the uncertainty that
the information correctly reflects a situation in which the buyer can help the system receive
maximum reward.

The costs mentioned above can be discussed from the point of view of knowledge (Hayek,
1945). Before the manufacturer and the worker meet, they both have something to sell. How-

ever, neither the manufacturer nor the worker knows to whom to sell. After meeting, they

still lack the knowledge of each other’s respective prices. The manufacturer wants to pay as
little in wages as possible, while the worker wants as to receive as much in wages as possible.
Negotiation is the process of learning each other’s true or acceptable price. Finally, each must
take a risk that the other is telling the truth and will deliver the goods. The more effectively
each investigates the other, the less risk each will face. Thus, a portion of overhead costs is the
cost of gaining knowledge about the marketplace.

Similarly, the two classifiers lack knowledge; each needs to discover with whom to transact.
The more information that the system stores about each classifier (such as strength and speci-
ficity), the more information that each classifier can use to make a decision. Thus, a portion of

the overhead costs is the costs of storing and analyzing a classifier’s previous performance.

Mechanisms That Reduce Transaction Costs

According to some economists that subscribe to transaction theory, efforts to reduce transaction
costs lead to the development of markets, organizations, and other economic structures (Coase,
1988). This subsection discusses some of the structures that develop while trying to reduce
transaction costs. In particular, keeping track of reputation and forming organizations wherein
transactions are repeated are two fundamental techniques. The organizational classifier system
presented in the following chapters uses these techniques.

Joining an organization offers protection to members from many different overhead costs. To
understand why organizations form, we first ask: why do people agree to long term contracts?
Agreeing to sign such a contract reduces future transaction costs. Working with the economic
market example, assume that both the manufacturer and the worker decide to sign a long

term contract. The manufacturer no longer needs to worry about finding a new worker for

~Nw b

\ |/
/ I\

Versus —— —

AN |~ W
— W |— pd N
pd N N —

Contract-Based Organizational

Figure 2.2: Transactions: As individuals, the manufacturer, M, and the worker, W, transact
with the outside world alone. As members of an organization, they work as a team.

each widget. Also, the cost of negotiating wages reduces to a one time expense. At the same
time, the worker faces a similar reduction in costs. As the manufacturer expands, he signs
long term contracts with additional widget builders. The next step is to form an organization.
The manufacturer now looks for permanent workers to replace temporary ones. Workers accept
employment to join a group of people linked by a common goal. Figure2shows the relationship
between the manufacturer and worker when they are not a part of an organization versus when
they are part of an organization. The idea is that individual lines represent single transactions.
When not part of an organization, a person must explicitly incur a cost for each transaction
with the outside world (anyone differing from the manufacturer and worker). However, as a
member of an organization, some transactions move from the individual’s point of view to the
organizational level. Thus, some tasks are jointly addressed, amortizing the costs among all
employees.

Organizations of classifiers can reduce some of the same costs. For example, preferentially
matching classifiers to messages posted by other classifiers within the same organization reduces

the costs of finding ‘good’ classifiers with whom to transact. The implication is that conflict

resolution needs to worry less about selecting less-than-optimal classifiers when matching clas-
sifiers from the same organization.

Another cost-reducing strategy is to pay closer attention to reputation. Working from the
earlier example, the manufacturer wants to hire a the worker who will produce the highest
quality widgets. How does the manufacturer find such a worker? Although impossible to
guarantee that a particular worker will fulfill expectations, the manufacturer might decide to
expend a great deal of effort researching each prospective employee. Workers might be asked
to take tests, build a prototype, or even work on a trial basis. Researching possible workers can
be an expensive action. Thus, to reduce the searching costs, the manufacturer might ask for
references from each worker. What role do the references play? In essence, the manufacturer
is looking at the reputation of each worker as seen through the eyes of the references. If the
manufacturer has previous experience with a worker, the information (a form of reputation) is
also considered during the hiring process.

Reputation plays a key role within classifier systems. Within traditional individual-style
(Michigan) classifier systems, classifiers carry a strength value. Credit allocation uses previous
and current performance to assign strength, which (according to the above usage) implies
that strength is a form of reputation for the carrying classifier. Conflict resolution uses the
reputation of strength to make the decision with whom a classifier will transact. Chapter 4
provides treatment of reputation within classifier systems.

There are other ways of reducing transaction costs. Specialized markets reduce the cost of
finding interested parties. For example, a farmer sells goods at a produce market because he
knows that interested buyers will be present. Court systems provide a mechanism for protecting

the rights of individuals. Employees join unions reducing negotiation costs with management.

Corporations join consortiums, reducing research costs. These examples only touch the surface
of possible cost-reducing structures. Ultimately, we would like to learn from transaction theory
a methodology to solve hard problems. The following section presents an abstract model used
to explore techniques for forming organizations from a population of individuals. Later chapters

address how to use the presented techniques to form organizations within classifier systems.

2.2 A Study of Organization Growth

Chapter 4 will focus on building an organizational classifier system (OCS) which uses mecha-
nisms found through studying transaction costs. Here, the thesis constructs a simplified model
that focuses on a facet of the OCS that controls organizational growth. Traditionally, a CS
either evolves individual classifiers (Michigan-style) or evolves a collective population of classi-
fiers (Pitt-style). The thesis will show that an OCS can simultaneously evolve both individuals
and collections of individuals by allowing multiple organizations to form within the population
of classifiers. Organizations compete for strength in much the same way as do individual rules.
This approach involves the autonomous growth of competing organizations each trying to solve
the same or related problems. Thus, an organization behaves both as an individual and as a
collection.

This section radically simplifies the OCS by assuming all agents are identical. The following

lists the main components of the simplified abstract model:

1. Agents and organizations
2. The fitness function

3. Organizational operators

10

4. Selection

Agents are individual classifiers, while organizations are containers of one or more agents.
If organizations are viewed as variable-sized chromosomes, the system evolves a population of
organizations in a GA-like fashion. The fitness function for each organization is a function of
the number of agents. Operators generate new organization possibilities, while a tournament
selection scheme selects organizations to be part of the next generation. The rest of this section

provides greater details for each component.

Agents and Organizations

Here, organizations contain homogeneous agents. Agents do not perform any specific actions
other than moving between organizations. The complexity of a normal classifier system is
abstracted away; an organization’s fitness becomes a function of the number of agents rather

than a function of agent behavior.

The Fitness Function

This model assumes that the goal of each agent and organization is to maximize profit. The
success of an organization is determined by the success of the individuals that make up the
organization. Thus, the fitness function F represents the per capita profit for each organization.
Each agent, as an employee, potentially earns revenue and incurs cost to the organizations. As
an abstract model, the fitness function uses the number of agents within an organization as the
sole determiner of fitness. Equation 2.1 shows the resulting fitness function for an organization:
such that R(M) equals the organizations total revenues, C(M) equals total costs, and M equals

the number of agents.

11

R(M) - C(M)
M

F= (2.1)

An organization’s total revenue is determined by a function of the number of agents. While
there are many possible revenue functions, three were examined that seem to represent a wide

range of real situations. The following list describes each equation:

Constant - R(M) = K. If an organization’s profit is not determined by the number of em-

ployees, its revenue would be constant.

Linear - R(M)= Ko+ KiM. The linear equation models organizations whose revenues in-

crease by the same amount for each additional employee.

Polynomial - R(M) = Ko+ K1 M + K,M?. Many organizations are able to increase revenues
by non-linear amounts with additional employees. A polynomial equation represents

restricted growth, but it seems consistent with many organizations.

There are many costs associated each employee in a real-world organization. The model
presented here focuses on the costs associated with communication between agents. Depending
on the hierarchy of an organization, agents will have to communicate with different numbers of
other agents. Here, costs increase as the quantity of communication increases. The following

list describes the equations used to calculate total costs:

Constant - C'(M) = K. Here, communication is trivial, and the addition of agents has no
effect on an organization’s total costs. While this case does not appear to correspond to

any real world situation, it provides a base from which to compare other equations.

12

Linear - C(M) = Ky + K; M. This would be the case if each agent communicates with a fixed
number of other agents, regardless of the organization’s size. An example of a hierarchical

structure that applies to the linear equation is a tree with fixed branching.

Polynomial - C(M) = Ko+ K1 M + K,M?. For some organizations, the communication costs
increase as a polynomial function of agents. For example, the total costs of an organi-
zation that requires each agent to communicate with every other agent is bounded by

M2,

By combining different total rewards and total costs functions, the fitness function can rep-
resent a wide range of situations. For example, an organization may produce a fixed quantity of
widgets regardless of how many employees work. Additional employees add to the management
costs without increasing the rewards. The reward equation (assuming that at least one employee
can produce the above quantity) would be constant, while the cost equation might be linear or
polynomial. Selection uses the fitness function to determine which organizations should be in
new generations. Next, the section describes operators which create new organizations to be

processed by selection.

Organizational Operators

Operators control the creation of new organizations from generation to generation. They are
characterized by the number of agents moved between organizations and whether they increase
or decrease the size of a selected organization. During each generation, the system applies
operators to pairs of organizations within the current generation. Selection (described next)

uses the output of the operators to choose which organizations form a new generation.

13

Each operator acts on a pair of organizations from the current population and outputs one

or two new pairs. The following list describes each operator:

AddOne This operator moves a single agent between two organizations. Two parent orga-

nizations are randomly selected from the current population. If only one organization
remains in the population, the operator in cooperation with selection directly passes the
remaining organization to the next generation. Figure 2.3 shows how AddOne works. A
and B are the pair of organizations selected from the current population. The operator

forms two new pairs of organizations by moving a single agent between copies of A and

B.

SubOne The counterpart to AddOne, this operator removes a single agent from an organiza-

Join

tion and places it in an empty organization. SubOne randomly selects an organization
from the current population and uses an empty organization to complete the pair. If
the selected organization only contains a single agent, the operator in cooperation with
selection directly passes the organization to the next generation. Unlike AddOne, Sub-
One outputs a single organization pair, moving a single agent from a copy of the selected

organization into the empty organization.

As with AddOne, the Join operator randomly selects two organizations from the current
population. Again, if the current population contains a single organization, that organi-
zation moves directly into the next generation. Unlike AddOne, this operator generates
a single organization pair consisting of one organization, containing all the agents from

the parent pair and an empty organization.

14

A+l
B-1
A __/
AddOne
B ()
A-1
Parent B+1
. . +
Organizations
Pair
Children
Organization
Pairs

Figure 2.3: The operator AddOne forms two new pairs of organizations from a parent pair of

organizations (A and B).

Cut Just as SubOne is the counterpart to AddOne, Cut is the counterpart to Join. It selects a
single organization from the current population and pairs it with an empty organization.
Cut then forms a new pair by moving a random number of agents from a copy of the

selected organization into the empty organization.

The model uses operators in related pairs: AddOne/SubOne and Join/Cut. By examining
the equations relating to speed of convergence for each operator pair, it should be possible to
calculate the speed with which a system will converge. Because selection (discussed next) is
a greedy algorithm (always selecting the most fit organization), the result of selection on the
output of operators is to always improve or maintain the organization with the highest fitness.
The time for the system to create one organization with the optimal size can be estimated by
the approximate time to combine organizations containing one agent into an organization of

the optimal size.

15

t= Soptimal (22)

Equation 2.2 shows the estimated time for the system to learn one organization of optimal
size, when using the AddOne and SubOne operators. Because these operators only change an

organization by one agent, the time is equal to the optimal size.

1 t
<§) Soptimal <1 (23)

The Join and Cut operators change an organization by an unspecified number of agents.
When used together, a coarse approximation of the time to find the first organization containing
the optimal size is shown in Equation 2.3. The equation assumes that on average the operators
change the size of an organization by a factor of two. Equation 2.4 solves Equation 2.3 for time.

The derivation occurs by first re-arranging Equation 2.4 and taking the log of each side
yields:

1

1
tlog, 3 < log, I

optimal

Reducing the resulting equation yields:

1
< ~logy g——

optimal

Finally, solving for t yields Equation 2.4:

t > log, Soptimal (2.4)

16

For both operator pairs, we expect convergence to be somewhat slower (but of the same
magnitude) than indicated because at times the system will not change the highest fit organi-
zation. The above operators work closely with selection to form a new generation. The process

of selection is described next.

Selection

The selection mechanism maintains as invariant the number of agents found within the entire
population of organizations. The basic idea is that offspring organizations, generated by an
operator, compete with parent organizations. After an operator creates a set of pairs of new
organizations, a tournament is held between the new pairs and the parent pair. The pair
containing the organization with the highest fitness survives to the next generation, while all
the other pairs are deleted. Because the operator creates pairs of offspring organizations that
contain the same number of agents as the parent pair of organizations, the number of agents
within the system remains constant.

The selection scheme used here is an extension of the selection method used in the GIGA
system (Culberson, 1992). There, the selection scheme maintained genetic material from gen-
eration to generation by only allowing offspring to replace parent chromosomes when they had
higher fitness. The motivation was to keep the genetic material invariant. Here, the same kind
of scheme is used, but the motivation differs in that the number of agents is invariant. Putting
together the components of the abstract model, the next section presents the results of running

the model when varying different parameters.

17

2.3 Results of the Organizational Growth Model

This section presents the experimental results for the above model when varying fitness func-
tions, operators, and initialization strategies. The fitness functions and operators are described
above. The section begins by introducing three initialization strategies. It continues by pre-
senting the results of three experiments, each exploring a different parameter. The section ends

by summarizing the results of organizational growth model.

Initialization Strategies

At the start of each run, the model is initialized to contain a population of organizations and
agents. Because the model represents an abstraction of a classifier system, it is important to rep-
resent different states of the production system. The following list describes three initialization

strategies that capture various states that may be found in a production system:

1. Start with 100 organizations each containing one agent.
2. Start with one organization containing 100 agents.

3. Start with a random number of organizations such that the total number of agents equals

100.

The three strategies explore three possible states of an organizational classifier system. The
first strategy represents a system of independent agents, while the second strategy represents
a system containing a single organization. The third strategy represents an intermediate state
between the first two strategies where organizations contain different numbers of classifiers.
The rest of this section describes the results of running the abstract model given a number of

different parameter settings.

18

Experiment 1: Comparing Operators

The first experiment examines differences between the AddOne/SubOne and Join/Cut operator
pairs. Because AddOne and SubOne move one agent at a time, one expects that changes in the
system will occur gradually. On the other hand, Join and Cut operators change the structure of
organizations by an unspecified number of agents and should cause rapid learning. Equations 2.2
and 2.3 predict the approximate times to appropriately size one organization using the different
operator pairs. After discussing some general results, two representative runs are compared.

Several different fitness functions and initialization strategies were examined while varying
the operators. In each case, using AddOne and SubOne operators caused the system to gradu-
ally learn the optimally sized organizations. Once the system found the organization with the
highest fitness, it remained stable. Also as expected, when using Join and Cut operators, the
system found the ideal solutions more quickly. Because organizations often change by large
degrees, the improvements often oscillated above and below the ideal solutions. Additionally,
even though one organization reached an ideal size, the system often took many more genera-
tions to stabilize the rest of the population. However, given enough time, using either operator
pair enabled the system to correctly size each organization.

The rest of the results for this experiment consists of a discussion of two representative
runs. Several hundred runs were completed in total. One run uses the AddOne and SubOne
operator pair, while the other uses the Join and Cut operator pair. The initialization strategy

and fitness function remain constant between the two runs and are described below:

e The initialization strategy starts the system with 100 organizations each containing one

agent.

19

e The fitness function uses linear rewards and polynomial costs based on an organization’s

size, M.
- R =100M
— C =625+ M?

— F =100M — (625 + M?)

The optimal size of an organization is determined by calculating the maximum of the fitness
function. In this case, we can readily solve for the optimum value analytically.
Substituting total rewards and total costs in the fitness function:

(100M — (625 + M?2))
M

F =

Setting to zero the first derivative of F with respect to M:

625
- M?
Solving for M:

M =25

Thus, the optimal size of an organization is 25, allowing the system to form 4 organizations
of optimal size. In addition to predicting the optimal size of an organization, the approximate
time to learn one organization with the optimal size can be calculated using Equations 2.2
and 2.4. For the AddOne and SubOne operator pair, substituting M = 25 into Equation 2.2
yields a convergence time { = 25. For the Join and Cut operator pair, substituting in M = 25

yields a convergence time { = 4.64. Thus, we expect the system to converge in about 25

20

100 T T T T T T T
AddOne/ SubOne
Joi n/ Cut -----
80 |- B
w
S 60 B
2
k)
]
£ 40 B
2
20| | g
0 g 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Generation

Figure 2.4: Organizational Growth: Fitness function uses linear rewards and polynomial
costs. Each run is initialized with 100 organizations each containing one agent. One run uses
AddOne/SubOne operator pair, while the other uses Join/Cut operator pair.

generations when using the AddOne/SubOne operator pair and in about 5 generations when
using the Join/Cut operator pair.

Figure 2.4 shows the size of the highest fit organization during each run. As expected, both
runs find an optimally sized organization near predicted times. Using the AddOne and SubOne
pair, the system converged in about 30 generations. While using the Join and Cut, the system
converged in about 7 generations. Also as expected, using AddOne and SubOne resulted in
a more gradual change. The speed that the system learned the four optimal organizations is
about twice as fast when using Join and Cut operators. Of course, the comparison does not

necessarily hold for more complex models where agents are differentiated.

21

Experiment 2: Comparing Fitness Functions

Experiment 2 compares the organization growth model using different fitness functions. Varying
the fitness function changes two characteristics of the search space. First, the fitness function
controls the optimal size of an organization. Second, it determines the rate of change in fitness
as the number of agents within an organization varies. Below, two representative runs show
the results of using two different fitness functions.

Differing from the previous experiment, the runs here initialize the system with a random
number of organizations of random size such that the total number of agents in the system
equals 100. In addition, both runs use the Join and Cut operators. Fach run uses a different
fitness function. The first fitness function models an organization with linear rewards and linear

costs. The equations are shown below:

o R =100M

o (' =20450M

o F— 100M—(]\240-|—50M)

Because the rewards are greater than the costs, using the same kind of analysis from the
previous experiment shows that the optimal size organization contains 100 agents (the most
possible). Because the system is initialized with randomly sized organizations, it is impossible
to directly plug into Equation 2.4 to determine the rate of convergence. However, using the
worst case shows that the system should learn the best organization size in approximately 7
generations.

The second fitness function is based on linear rewards and polynomial costs. The equations

are as follows:

22

o R =100M

o C' =625+ M?

50M—(625+M2)

o = 7

The analysis from the previous experiment shows that the optimal organization contains 25
agents. The system should learn the first organization containing 25 agents in approximately 5
generations.

Figure 2.5 shows the number of organizations in the system during each run. As expected,
the run using the first fitness function quickly converges to one organization. The run using
the second equation takes longer to fully converge. While not shown, the second run succeeds
at quickly finding first organization containing the optimal number of agents. However, it then
needs to size three other organizations also containing the optimal number of agents. The
additional time used to appropriately size all the organizations explains the additional time

needed to stabilize.

Experiment 3: Comparing Initialization Strategies

The final experiment examines the model’s behavior when using different initialization strate-
gies. Organizational sizing techniques need to be robust to differing initial organizational struc-
tures. Given the characteristics of the abstract model, the initialization strategy should not
change how the system generally behaves. After describing the parameter settings, the results
for three runs comparing initialization strategies are presented.

FEach of the three runs uses the AddOne and SubOne operators. The fitness equation (the
same one from experiment 1) uses linear rewards and polynomial costs. The list below describes

the equations.

23

10 T T T T T T T

First Fitness Function
Second Fitness Function -----

Nunber of Oegani zations

0 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140
Generation

Figure 2.5: Organizational Growth: The operators are Join and Cut. Each run is initialized
with randomly sized organizations such that the total number of agents equals 100.

o R =100M

o O =625+ M?

o F— 50M—(§5\§5+M2)

As previously calculated, the organization with the maximum fitness contains 25 agents.
The time to correctly size the first organization should vary depending on the initialization
strategy. The first strategy initializes the system with 100 organizations each containing one
agent. The expected time is approximately 25 generations. The second strategy initializes the
system with one organization containing 100 agents. The expected time is also 25 generations.
The third strategy initializes the system with randomly sized organizations. The expected time
varies depending on the initial size of the organizations. In the worst case, all the organizations
contain agents such that their size is different from the optimal size by 25 or more agents. The

approximate time would be 25 generations. However, it is possible that an initial organization

24

100 T T T T T T T
Best Size
Aver age Size -——-
80 -
[%2)
o
S
g 60 | i
=
<
(=2
e
° 40 -
]
£
=3
=
20 oo ! 4
0 al L L L L L L L

0 20 40 60 80 100 120 140
Nunmber of Agents

Figure 2.6: Organizational Growth: The fitness function uses linear rewards and polynomial
costs. The operators are AddOne and SubOne. The run is initialized with 100 organizations
each containing one agent.

will contain the optimal 25 agents. So, the estimated time is anywhere between 0 and 25
generations.

Figures 2.6, 2.7, and 2.8 show the size of both the most fit organization and the average
fitness of all organizations during the respective runs using each initialization strategy.

Each run behaved as expected. The times to find the first appropriately sized organization
for the first and second runs were both about 25 generations. In addition, the third substantially
sized the optimal organizations faster than the previous two runs.

The above results show how organizational operators evolve appropriately sized organiza-
tions given the simplified environment. While using the Join and Cut operators enabled the
system to more quickly learn the first organization containing the optimal size, the time for the
entire population of organizations to stabilize was approximately the same as for the AddOne

and SubOne operator pairs. In addition, the use of the Join and Cut operators caused the

25

100 T T T T T T T
Best Size
Aver age Size --——-

80 |- B
1%
c
o
S 60 |- g
= 1
[|
[=2] |
8
- L z
° 40 ‘\. g
5 .
£ -
3 \

/\ y'\‘\" \\ !
20 ‘\J\‘JM\'H \‘v"\,, X A ' AL i ! b
0 1 1 1 1 1 1 1
0 20 40 60 100 120 140

80
Nunmber of Agents

Figure 2.7: Organizational Growth: The fitness function uses linear rewards and polynomial
costs. The operators are AddOne and SubOne. The run is initialized with one organization
containing 100 agents.

100 T T T T
Best Size ——
Aver age Size -——-
80 |- B
w
S 60 B
2
ks
]
£ 40 B
2
20 /J premmem s i g
0 1 1 1 1
0 50 100 150 200 250

Ceneration

Figure 2.8: Organizational Growth: The fitness function uses linear rewards and polynomial
costs. The operators are AddOne and SubOne. The run is initialized with randomly sized
organizations such that the total number of agents equals 100.

26

system to oscillate organization sizes as it neared convergence. Using AddOne and SubOne led
the system to gradually converge. While varying fitness function changed the optimal solutions,
it did not affect the system’s ability to converge. Finally, the system learned appropriately sized

organizations regardless of the initialization strategy.

2.4 Summary

The chapter opens by providing an introduction to the theory of transaction costs from eco-
nomics to explain the formation of organizations. By mapping the production component of
a classifier system to an economic world, it is possible to find mechanisms that autonomously
form hierarchies of classifiers. The main idea is an assumption that people try to reduce over-
head costs associated with transactions, the exchange of goods or services. Several techniques
reduce these costs. In particular, forming organizations provides a common interface to the
outside world, protecting members from some overhead costs.

Afterwards, an abstract model of a classifier system of homogeneous agents is built to
isolate the simplest organizational sizing factors. Complex organizational behavior is modeled
by different fitness functions based on the size of the organizations. Organizational operators,
acting on pairs of organizations, form new pairs of organizations with differing sizes, after which
a form of tournament selection determines which pairs pass into new generations.

The results of running the abstract model under varying conditions show that, regardless
of the fitness function and initialization strategies, the system is able to locate optimally sized
organizations. The choice of operator changes how quickly the system sizes the first organization
containing the optimal number of agents. Using the Join and Cut operator pair led the system

to more quickly find the first optimally sized organization. However, in this system the time

27

for the system to completely converge was not sensitive to organization operator choice. In
addition, using the AddOne and SubOne operator pair led the system to gradually converge,
while using the Join and Cut operator pair led to a more oscillatory convergence.

Before describing the design of a practical classifier system augmented by organizational
operators, it is important to understand the basic design of classifier systems without organi-
zation operators. The next chapter discusses relevant current work in classifier systems and

details a simple classifier system.

28

Chapter 3

Classifier Systems

Classifier systems (CS) approach machine learning by combining a production system with a
rule-discovery mechanism using a genetic algorithm. This chapter categorizes the two popular
approaches, Michigan and Pitt, along a continuum of individual and collective behavior. It then
examines some of the advantages and disadvantages of each approach and suggests that there is
a benefit to autonomously adjusting the behavior along the continuum. A more comprehensive
survey of classifier systems can be found by Wilson and Goldberg (Wilson & Goldberg, 1989;
Goldberg, 1989). The chapter ends by introducing a simplified CS that forms the basis of the

organizational classifier system (OCS), presented in the following chapter.

3.1 Individual and Collective Approaches to Classifier Sys-

tems

A useful way to categorize classifier systems is to examine the fundamental unit on which the
genetic algorithm component works. Two methods, each at an extreme along a continuum, are

the individual approach and the collective approach. At one end of the spectrum, individual

29

classifier systems map each classifier to an individual in a population of strings. The CS assigns
strength (or fitness) through credit allocation schemes, such as the bucket brigade algorithm,
while the GA component evolves individual classifiers. At the opposite end of the spectrum,
collective classifier systems map the entire production system (the population of classifiers) to
an individual in a population of strings. Here, the GA evolves the population of production
systems, evaluating each individually against a problem environment. Traditionally, systems
that follow the first method are called Michigan-style classifier systems (Holland, 1971), while
systems associated with the second method are called Pitt-style classifier systems (Smith, 1980).

Both of the above approaches have benefits and difficulties. Classifier systems that exploit
individual behavior have the advantage of a temporal credit allocation scheme (the bucket
brigade algorithm) that enables the system to efficiently learn which rules to fire within the
production system. Because credit is efficiently allocated, rule systems often adapt quickly.
However, in practice, hard problems are not solvable because the bucket brigade fails to correctly
capture the behavior of interacting classifiers. Complex behaviors such as building long rule
chains, default hierarchies, and overcoming parasitic classifiers are difficult to learn (Riolo,
1987a; Riolo, 1987b; Westerdale, 1989; Smith, 1991).

On the other hand, classifier systems based on collective approaches make direct use of
the GA to evolve entire production systems. In practice, these systems solve more difficult
problems then the individual-based classifier systems. However, collective systems face two
problems: large computation requirements needed to solve hard problems and the limited
feedback bandwidth inherent to the GA (Grefenstette, 1987). Figure 3.1 shows a simple chart

describing tradeofls of the two approaches.

30

Rate of Convergence

Difficulty Fast Slow
Simple 1,0 C
Complex 0] C

Figure 3.1: Tradeoffs between approaches to classifier systems. Individual (I) approaches
converge quickly on simple problems. Collective (C) approaches converge slowly but are able to
solve more complex problems. The proposed organizational (O) approach should solve complex
problems and converge relatively fast.

Ideally, a classifier system would exploit both individual and collective learning behaviors.
This thesis presents a concept for a classifier system capable of exhibiting both behaviors.
The idea is to build a classifier system that simultaneously evolves groups of classifiers. These
organizational groupings vary in size and interact with each other. Building from an individual-
based approach, the organizational classifier system (OCS) presented in the next chapter allows
individual classifiers to form organizations that are subject to similar evolutionary pressures as
the classifiers themselves. The following section presents the simple classifier system that will

form the point of departure for the OCS.

3.2 A Simple LCS

This section presents a detailed description of a simple classifier system (SCS) based on an indi-
vidual approach. It captures many basic elements found within many Michigan-style classifier
systems. It starts from models presented by both Goldberg and Smith (Goldberg, 1989; Smith,

1991).

31

The simple classifier system interacts with an outside environment which defines the learning
problem. During each cycle, the environment outputs its current state, while accepting an
input signal from the classifier system. Some actions will cause the environment to output an
additional reward signal, while others will not. The goal of the classifier system is to learn a
set of rules that over time cause the environment to signal the maximum reward.

The simple classifier system contains three components:

1. A production system

2. Credit allocation and conflict resolution schemes

3. Rule discovery through a genetic algorithm

The remainder of this section describes each component in detail and provides a summary

of the steps performed when running the system.

The Production System

The production system consists of a collection of rules (termed classifiers) and a message
board. Figure 3.2 shows the production system interacting with an environment. Each classifier
contains a condition part and an action part. The condition part includes both internal and
external (environmental) conditions, while the action part includes messages to be sent to both

the message board and the environment. Classifiers take the following form:

IF conditions THEN actions

The message board contains two messages, internal and environmental. Posted by the
classifier that most recently fired, the internal message represents internal memory. The external

message, posted by the environment at the start of each cycle, represents the environment’s

32

Environment

Current
State Action Reward

Production System Action Reward
Message Board Rule Set
Message
_ Classifiers
Internal Environment
Messages
Message Message '

Figure 3.2: Overview of the simple classifier system (SCS). The goal is to maximize the reward
signal output by the environment. Classifiers in the rule set match both messages that have
been posted by other classifiers and those posted by the environment. Credit allocation and
conflict resolution determine which matching classifiers fire. Classifiers selected tofire post
internal messages and send action messages to the environment, resulting in reward signals.

33

Phenotypical Genotypical
IF ABTHEN BD 0001$0111

Table 3.1: Two ways of representing the same classifier. Note that the symbol § separates
the conditions from the actions in the genotypical representation.

current state. Messages can be represented both by phenotype and genotype. For example, if a
message’s phenotype is one of four letters (A, B, C, D), the genotype would be the concatenation
of two bits ({00}, {01}, {10}, {11}).

During each cycle, the production system performs pattern matching between the condi-
tion part of classifiers and messages already posted to the message board. Conflict resolution
(described later) selects a single classifier to fire. When firing, a classifier sends an internal
message to the message board and an action message to the environment. Table 3.1 shows,
in both phenotypic and genotypic forms, an example of a classifier whose conditions match an
internal message A and the current state B and whose actions post an internal message B and
send the action message D. The environment uses the action message as input and may output
a reward signal based on that message.

Next, the section examines credit allocation and conflict resolution schemes which control

which classifiers are selected to fire.

Credit Allocation and Conflict Resolution Schemes

Credit allocation and conflict resolution schemes control how the production system selects
which classifiers should fire. In addition, credit allocation assigns a utility measure to each

classifier, which the GA component uses as a classifier’s fitness.

34

Messages

>
e @ Environment
-

Payments

Figure 3.3: Representation of the bucket brigade process. Classifiers, represented by circles,
post messages when their conditions are met by matching previously posted messages. The
arrows from left to right show the flow of messages. At the same time, strength flows from right
to left. In order to fire, a classifier pays a fraction of its strength to the previous classifier. The
last classifier to fire in the chain receives strength as a reward from the environment.

Credit allocation distributes reward among those rules that either directly or indirectly
cause the environment to signal a reward. The simple classifier system uses the bucket brigade
algorithm, developed by Holland (Holland, 1971). The idea is similar to the notion of a chain
of people passing buckets of water to each other with the goal of extinguishing a fire. Classifiers
also form chains when solving a problem. Each classifier posts a message to be read by the next
member of the chain, while matching a message posted by the previous member. Whenever a
classifier fires, it must pay a fraction of its strength to the classifier that posted the previous
internal message. In addition, when a classifier’s action causes the environment to signal a
reward, the classifier’s strength increases by the amount of the reward.

Figure 3.3 shows the bucket brigade process. The three classifiers form a rule chain that lead
to an environmental reward. In the figure, each circle represents a classifier. First, classifier C1
fires, posting a message that allows classifier C2 to fire during the next cycle. Before C2 fires,

it pays a fraction of its strength to classifier C1.

35

Similarly, C3 must pay a fraction of its strength to C2 before firing. Classifier C3 sends an
action message to the environment, which responds by outputting a reward signal that augments
C3’s strength. When the rule chain fires again, a fraction of the original reward moves from C3
to C2. If the system fires the rule chain repetitively, the reward will eventually be distributed
among the three classifiers. Multiple reward signals cause the strength in the rule system to
grow without bound. To limit strength, the SCS applies a tax to each classifier at the end of
a cycle. This is likely to cause ineffective rules to have smaller strength. Credit allocation also
plays an important role in the rule-discovery mechanisms described later in this section.

Conflict resolution uses the strength values assigned during credit allocation to determine
which classifiers should fire when two or more classifiers match the same environment state
and internal message. In order to reduce premature convergence, it calculates a noisy bid for
each matching classifier and selects the one with the highest bid. The noisy bid, developed by
Goldberg, combines a deterministic bid (a fraction of classifier’s strength) and some Gaussian

noise (Goldberg, 1989).

Rule Discovery Using a Genetic Algorithm

Rule discovery usually occurs through the use of a genetic algorithm. The classifiers contained
in the production system make up the population of individuals that the GA evolves. A
classifier’s fitness has conventionally been defined to be its strength value, determined through
credit allocation. Because this thesis focuses on learning within the production system, the

SCS does not make use of a rule-discovery mechanism.

36

The Process of Running the Simplified Classifier System
The following summarizes the steps of running the SCS through one cycle.
e The environment posts the current state to the message board

e The production system creates a list of potential classifiers that match both the environ-

ment message and the internal message
e Conflict resolution selects one classifier from the potential list to fire

o Credit allocation transfers a fraction of strength from the selected classifier to the classifier

that previously fired

o The selected classifier fires by posting an internal message and sending an action to the

environment

o If the environment signals a reward, it augments the firing classifier’s strength by the

amount of the reward

o At the end of the cycle, the production system applies a tax to each classifier, reducing

its strength

The classifier system completes the above steps during each cycle. The system runs until
some stopping criterion is met. For example, the environment reaches a stopping state or the

system completes a fixed number of cycles.

3.3 Summary

Most classifier system research efforts treat classifiers as individuals among a population or as

part of a collection of classifiers. The Michigan-style classifiers take the individual approach,

37

using a GA to evolve distinct classifiers. While rapidly converging to promising solutions, these
systems often fail to find optimal rule sets for hard problems. The Pitt-style classifier systems
take the collective approach, using a GA to evolve a population of production systems each
containing a fixed number of classifiers. While able to solve harder problems, these systems are
computationally expensive. Ideally, a classifier system would autonomously evolve a production
system containing both individual and collective structures. The degree to which individual or
collective behavior exists would be determined by the nature of the problem.

Recognizing that classifier systems are very complex and difficult to analyze, the chapter
ends by detailing a simple classifier system (SCS). Based on an individual approach, the SCS
keeps track of a population of classifiers that interact with an outside environment. Classifiers
post messages to a message board and send action messages to the environment when matching
both an environment state and an internal message from the message board. Conflict resolution
selects which classifiers fire by using a noisy bidding. Credit allocation assigns strength based
on the bucket brigade algorithm.

The next chapter uses organizational operator techniques from Chapter 2 to modify the SCS
to form organizations of classifiers autonomously. It compares the SCS to an organizational

classifier system with a common problem environment.

38

Chapter 4

Autonomous Organizational

Learning

This chapter contrasts learning within a simple classifier system (SCS) to learning within an or-
ganizational classifier system (OCS). Although able to solve simple stimulus-response problems,
classifier systems evolving individual classifiers are often unable to learn ideal rule sets when
problem difficulty increases. On the other hand, collective approaches to classifier systems may
be able to solve harder problems, but are computationally expensive. Organizational learning is
the process of autonomously forming groups of individual classifiers which act in a coordinated
fashion.

Forming good organizations is easier said than done. When viewed from the perspective
of a single rule, the question of whom to trust (whom to answer and whom to pay) is the
crucial one. In Chapter 2, the question was viewed in the light of transaction cost theory; and
those ideas are carried over to the classifier systems here. Specifically, we use reputation for

organizational recruitment, and we pay attention to efficient organization sizing.

39

The work here builds on Smith’s work on parasitic classifiers, using his problem as a test
bed for new mechanisms (Smith, 1991). The problem requires classifier systems to remember
previous environment states in order to send the correct actions to the environment. Careful
analysis of this problem shows three types of parasitic classifiers. This study finds that, in a
simple classifier system (SCS), as the number of parasites to ideal classifiers increases, perfor-
mance rapidly decreases. Testing the organizational classifier system (OCS), using reputation
values and organizational operators on the same problem, shows improvement, particularly in
weeding out many of the parasites that stymied the SCS.

The chapter starts by introducing the notion of parasitic behavior intuitively. Section 4.2
then describes a test environment where parasitic classifiers are prevalent. Section 4.3 runs the
SCS on the test environment and summarizes the results. Afterwards, the chapter analyzes
deficiencies of using bucket brigade strength for conflict resolution. Two reputation values,
short-term and long-term, are introduced to replace traditional strength values. Section 4.5
describes the design of the OCS, while the following section shows the results of running the
OCS on the test problem. The chapter analyzes the results in Section 4.6. A further section

indicates directions for further research. Finally, the chapter ends with a summary.

4.1 A Discussion on Parasitic Behavior

This section provides a discussion of parasitic behavior from two viewpoints. The first part
looks at human society to find an intuitive definition for a parasite. We gain insight into the
OCS design by noting the mechanisms society has evolved to deal with parasitic behavior. The

second part looks at parasitic behavior within a classifier system.

40

Parasitic Behavior from Society’s Viewpoint

A parasite benefits from an exchange of goods or services without making a useful or beneficial
contribution. For example, using the manufacturer and worker example from Chapter 2, the
manufacturer hires a worker to build a widget. If the manufacturer pays the worker and
the worker does not build the widget, an exchange occurs where one party’s contribution is
not beneficial. Thus, this worker is a parasite (at least from the manufacturer’s viewpoint).
The problem of discovering parasitic behavior becomes more difficult as the number of parties
involved increase. For example, if the manufacturer hires a team of workers to build widgets, a
parasitic worker may be able to hide behind the success of the group.

Some parasites exhibit charlatan-like behavior. They advertise that they will provide high-
quality goods or services when in fact they deliver less than advertised. For example, practition-
ers of mail fraud make products look very attractive on paper, when the product is either cheap
or non-existent. Another example may occur when hiring a new employee into a company.
The employee may have a wonderful resume and great references. However, once hired, the
employee may not perform well or, worse, may cause someone else in the company to perform
poorly. The former case can be handled by identifying and firing the poor performer, but the
latter case is difficult to address.

How does society deal with parasites? In early societies, members of a tribe could bring
complaints to a chieftain. Fear of punishment kept tribal members in line. Today, courts and
laws act to protect previously established rights. Failure to abide by the rules can result in fines
or jail sentences. Established markets, such as stock exchanges, incorporate rules that threaten
to expel members when violated. Other mechanisms such as word-of-mouth reputation and

consumer reports also prevent parasitic behavior by alerting people to a parasite’s history.

41

Although the above mechanisms can prevent many acts of fraud, they will not prevent subtler
forms of parasitic behavior. In these instances, selection may take place at the level of later

organization competition.

Parasitic Behavior from the Classifier System Viewpoint

Classifier systems face similar parasitic behavior among classifiers as does society among people.
If we consider the production system of a CS to be a market, classifiers transact with each
other by exchanging information and strength. Classifiers selling information post an internal
message to the message board, while classifiers buying the information use the posted message
as indication that it is a good time to fire. An example of a parasite would be one that
sells information causing useful rules (ones that help gain reward from the environment) to
fire during inappropriate situations (ones that do not lead the system to gain environmental
reward). Because we are interested in maximizing the reward received from the environment,
it may also be useful to consider any a parasite classifier that does not lead the system to gain
the maximum possible reward.

How well does a conventional individual-based CS discover parasitic classifiers? Classifier
systems built so far do not contain many of the mechanisms used in society to determine
parasitic behavior. If the classifier system makes use of the internal message board and the
problem is not just stimulus-response, the system needs to develop rule chains. In this case, if
the environment does not signal maximum reward, it becomes very difficult to determine which
rule is performing poorly. The problem could be with the current rule or with the one that
posted the previous message. Worse, it could be with any classifier that posted any previous

message. To determine which classifier to fire, the system generally selects the classifier with the

42

most strength. However, charlatan parasitic classifiers often gain undeserved rewards. These
classifiers fail to lead the system to maximum reward even though they are strong.

The next section provides examples of parasitic classifiers within a problem environment.

4.2 Testing Environment

This section presents a testing environment that will allow us to explore the ability of a clas-
sifier system to distinguish parasitic classifiers. In his dissertation, Smith (1991) used this
testing environment to explore how classifier systems behave when tackling problems that re-
quire memory-depth greater than zero (i.e., not stimulus-response). The results show that
parasitic classifiers can and do cause the traditional classifier system to fail to learn optimal
solutions. This section begins by introducing memory-depth problems. It follows by describing
the memory-depth-one problem used in this thesis. Finally, the section ends by introducing the

concept of working sets and describing the parasitic nature of some classifiers.

An Introduction to Memory-Depth Problems

A memory-depth problem is one where the system must know something about the past in order
to select an action for the present. The nature of these problems is that classifiers must interact
in a coordinated fashion to achieve maximum reward. For example, one classifier might post
an internal message which indicates which classifier should fire next. Other related problems
require learning rule-chains, but do not require the system to keep track of previous environment
states. For example, a system might require that one rule fires after the next without regard

to the environment state in-between. Thus, an important aspect of memory-depth problems is

43

the need for classifiers to use both the environment state and an internal message to determine

the next correct action.

The Memory-Depth-One Problem

The testing environment used in this thesis is a memory-depth-one problem, where the system
need only keep track of the environment state from the previous time step. The CS stores the
environment’s state information in the internal message, enabling the system to remember the
previous environment state.

Consider classifiers with the following form:

IF current-state message & previous-state message

THEN next-state message & action message

To fire, a classifier matches both the current-state message (posted by the environment)
and the previous-state message (stored as an internal message). When a classifier fires, it posts
a new internal message (next-state message) and sends an action message to the environment.

In the problem specification, the environment keeps track of two state variables, current
and previous. At the start of each cycle, the environment randomly generates a new current
state, setting the previous-state value to the old current-state value. If the production system
sends an action message that corresponds to the value of the previous state, the environment
signals a reward.

Specifically, the environment states are one of four values (in phenotype terms): a, b, c,
or d. Similarly, messages are one of four corresponding values: A, B, C, or D. An example

classifier is shown below:

IF A& BTHEN A& B

44

Messaqge Board

Internal
Message: B

Environment

Current: a
Previous: b

\

Classifer: CCond: IF AB) (Action: THEN AB)

Figure 4.1: The classifier matches the current-state message A and the previous-state message
B. When it fires, it posts the next-state message A (replacing the old previous-state message)

and sends the action message B.

The rule says if the current-state message equals A and the internal message equals B then
post a new internal message A and send the action message B to the environment. Figure 4.1
shows the example classifier’s interaction with a message board and the environment. Because
the environment’s previous state ‘b’ corresponds to the action message B, the environment
would signal a reward if the classifier were to fire.

A quick examination of a classifier’s structure shows that there are 16 unique conditions (4

current-states combined with 4 previous-state messages) and 16 unique actions (4 next-state

messages combined with 4 actions) leading to 256 unique classifiers.

Next, the section examines the nature of the above classifiers within a CS.

45

Working Sets and Types of Classifiers

As a classifier system interacts with an environment, it learns a subset or working set of the
classifiers contained within the production system that are regularly chosen to fire. In other
words, the system learns which rules should fire during conflict resolution situations. Unlike
rule-chains, the order in which classifiers are fired within a working set is not specified. Ideally, a
classifier system would learn the working set that causes the environment to signal the maximum
reward. However, with rule-discovery turned off (as it is in this thesis), the goal of the system
is to learn the working set that achieves the maximum reward, given a particular population of
classifiers.

Using the above environment, a CS will ideally learn rules for each of the 16 unique condi-
tions. A complete working set contains rules reacting to each unique condition. Table 4.1 shows
one possible complete working set of 16 classifiers capable of obtaining the maximum reward
from the environment. The order in which the classifiers are fired depends on the current-state
messages posted by the environment.

Two factors influence a working set’s ability to obtain reward. First, the working set may
contain an incomplete set of rules. Table 4.2 shows a working set lacking rules that post next-
state messages using C or D values. The working set is not complete because it does not
address all possible situations. Second, the system may incorporate in the working set parasitic
classifiers, which lead the system to obtain less than the maximum reward. Again, examining
Table 4.2, the last four rules post next-state messages that cause the next classifier that fires to
send an incorrect action message. Next, the section examines the nature of individual classifiers

that make up a working set.

46

Conditions Actions

Current State Previous State | Next State Action
Message Message Message Message

A A A A

A B A B

A C A C

A D A D

B A B A

B B B B

B C B C

B D B D

C A C A

C B C B

C C C C

C D C D

D A D A

D B D B

D C D C

D D D D

Table 4.1: Working set of 16 classifiers capable of obtaining the maximum reward from the
environment.

Conditions Actions

Current State Previous State | Next State Action
Message Message Message Message

A A A A

A B A B

B A B A

B B B B

C A A A

C B B B

D A A A

D B B B

Table 4.2: Working set of 8 classifiers, which fail to cover the 16 possible situations.

47

Conditions Actions

Current State Previous State | Next State Action
Message Message Message Message

A A B B

A B B A

A C B C

A D B D

B A A B

B B A A

B C A C

B D A D

C A C B

C B C A

C C C C

C D C D

D A D B

D B D A

D C D C

D D D D

Table 4.3: Working set of 16 classifiers capable of obtaining the maximum reward from the
environment. Notice that when previous-state messages indicates an A or B, the classifier
sends a B or A action message respectively. The working set obtains the maximum reward,
because whenever the current-state message is A or B, the rules post B or A next-state messages
respectively.

A quick comparison between the classifiers of Table 4.1 and the classifiers of Table 4.2
shows that some classifiers differ in the quality of information posted to the message board.
Examination of possible classifiers reveals three types of parasitic classifiers in relation to a
particular working set. That is, parasitic behavior is context dependent. Whether a classifier is
parasitic may depend on the working set to which the CS is closest to convergence. For example,
Table 4.3 shows a complete working set which contains some classifiers that would be parasitic
to the working set of Table 4.1. In particular, the classifiers that react to conditions containing

A or B previous-state messages would cause some rules in the Table 4.2 to fire incorrectly.

48

Conditions Actions
Classifier | Current Previous State | Next State Action
Type State Message Message Message
Ideal A B A B
1 A B A C
2 A B D B
3 A B D C

Table 4.4: Example types of classifiers relative to an ideal working set.

The following definitions of parasites are relative to a set of ideal classifiers (in that they

are part of a complete working set that achieves the maximum reward) shown in Table 4.1:

Type 1 Parasites These classifiers post the correct next-state message but send an incorrect

action message to the environment

Type 2 Parasites These classifiers post an incorrect next-state message, while sending the

correct action message to the environment

Type 3 Parasites These classifiers post the incorrect next-state message and send an incorrect

action message to the environment

Table 4.4 shows an example of the four possible classifications for classifiers. Within a
classifier system, each of the presented classifiers would compete during conflict resolution
because their conditions are the same. The system, however, may or may mot be able to locate
the ideal rule to fire.

The next section describes the results of running the simple classifier system (SCS) on the

test problem environment under a number of different initial settings.

49

4.3 Running the SCS on the Test Environment

This section presents the results of running the simple classifier system (SCS) presented in
Chapter 3 on the test environment described in the previous section. The experiments consist
of seven tests each initializing the system with a different set of classifiers. Three criteria are
used to examine a system’s ability to achieve reward and converge under these test situations.
Ideally, the SCS would always find a complete working set of 16 ideal rules capable of achieving
the maximum environmental reward. Indeed, as long as the ratio of parasitic to ideal classifiers
is small, the system performs well. However, as the number of parasites increase, performance
degrades rapidly. The section begins by describing the seven tests. Then, it presents the

performance criteria. The section closes by discussing the results of running the SCS.

Description of Experiments

The purpose of developing a testing environment is to provide a common problem within which
to evaluate the performance of different classifier systems. Because the SCS and upcoming OCS
do not use a rule-discovery mechanism, it is necessary to simulate how the system behaves given
different initial rule sets in order to evaluate their performance. In each of the tests below, the
members of the complete working set shown in Table 4.1 are part of the initial rule set. By
ensuring that a complete working set (capable of achieving the maximum reward) is part of each
test, a classifier system’s performance is comparable to an ideal standard. The following list

describes seven tests using different numbers of ideal and parasitic classifiers in the population:

Test 1 The 16 individual ideal classifiers necessary to achieve the maximum reward

Test 2 16 ideal classifiers and 1 Type 2 parasite

50

Test 3 16 ideal classifiers and 8 Type 2 parasites

Test 4 16 ideal classifiers and 5 Type 1, 6 Type 2 and 5 Type 3 parasites

Test 5 16 ideal classifiers and 16 Type 2 parasites

Test 6 32 ideal classifiers and 32 Type 2 parasites

Test 7 16 ideal classifiers and 32 Type 2 parasites

The tests were designed to explore three aspects of problem difficulty. The following list

describes the three problem aspects:

Parasite-to-Ideal Ratio The proportion of parasitic classifiers to ideal ones indicates both
the amount of noise in a system and the degree to which a classifier system must overcome
the parasite problem. Tests 1, 2, 3, 5, and 7 vary the ratio of parasites to ideal classifiers
from zero to two. We expect that performance of both the SCS and OCS will degrade as

the ratio increases. However, the OCS may degrade less quickly.

Parasitic Mix Three types of parasitic classifiers are defined in the previous section. Test 4
examines how the system behaves when faced with parasites from each type. One might
naively expect that Type 3 parasites cause the most difficulty because they fail to both
post the correct next-state message and send the correct action. However, because of the
greater signal difference between a parasite and an ideal classifier, the system should be
able to more easily detect and isolate the Type 3 parasitic classifiers. Thus, depending
on system parameters, either the Type 1 or Type 2 parasites should be most difficult to

distinguish.

51

Scale Adding classifiers to the system increases the amount of noise that must be overcome.
Comparing Test 5 and 6 will show how a system behaves when the number of classifiers
doubles. In addition to distinguishing between ideal and parasitic classifiers, the system
must select a subset of ideal classifiers to be part of the working set. Because competing
organizations isolate and weaken groups of under-performing classifiers, the OCS may

handle the increase in numbers more gracefully than the SCS.

Next, the section examines different ways of measuring the performance of a CS on the

above tests. This will serve as a baseline for examining OCS improvements.

Measuring Performance

The criteria used to measure the performance of CS on the above tests is described in the list

below:

Percent Correct This is the percentage of actions sent to the environment that resulted in a
reward signal. It measures a classifier system’s ability to achieve the goal of maximizing

environmental reward.

Number of Mistakes This is the number of parasitic classifiers that have substantial strength
(strength > 1.0) at the end of a run. If the CS has converged and contains a working set,
number of mistakes indicates the number of parasitic classifiers that succeeded in fooling
the system. However, if the system has not converged, this number could be artificially

high or low and loses some meaning.

Convergence Time This is an approximate evaluation of the amount of time for the system to

converge on a steady percent-correct score. Time is measured by the generation number,

52

Test | Percent Correct | Number Of Mistakes | Convergence

1 100 0 0

2 100 0 20

3 63 6 4000
4 72 5 3000
5 51 6 7000
6 47 4 40000
7 37 6 10000

Table 4.5: Summary of SCS performance - Notice that for later tests, percent correct decreases
without a corresponding increase in the number of mistakes.

the number of opportunities the production system has to send an action message to the
environment. An alternative criteria not examined here would be the convergence time
for the system to find a stable working set. However, it is possible that the an unstable
working set leads to stable percent-correct performance (imagine two identical classifiers

competing to be selected).

The above criteria allow us to evaluate a classifier system’s performance both by the quality
of solutions and speed of convergence. The section closes by examining the performance of the
SCS on the test environment. In a later section, these measures are also used to evaluate the

performance of the OCS.

SCS Performance

Ideally, the SCS would always find a set of 16 ideal rules necessary to achieve the maximum
reward from the environment. However, as the number of parasites increases, performance
degrades. Table 4.5 summarizes the results in terms of the performance criteria mentioned
above. Below we examine the SCS’s performance on all three aspects of problem difficulty

discussed earlier.

53

The first problem aspect examines changing the ratio of parasitic to ideal classifiers. The
hypothesis is that increasing the ratio would degrade performance. As expected, the system
achieved lower percent-correct scores as the ratio increased in tests 1, 2, 3, 5, and 7. The time
to convergence also appears to increase with the ratio. Interestingly, the number of mistakes
does not change among tests 3, 5, and 7. Close examination of the classifiers at the end of the
runs shows the percent-correct score is somewhat dependent on which classifiers are parasites.
If two Type 2 classifiers generally fire right after one another, the effect is less damaging than if
they each separately fire before ideal classifiers. Thus, the decrease in percent correct between
Test 3 and 5 occurs because the parasites learned during Test 5 are more damaging. However,
this phenomenon does not explain the poor performance resulting during Test 7. There, the
system fails to learn a stable working set even though the percent correct converges.

The second problem aspect examines the mix of different types of parasitic classifiers. The
hypothesis is that Type 1 or 2 parasites would be more difficult to recognize. The results of
Test 4 shows the performance of the SCS on a set of classifiers with nearly equal numbers of
each type of parasite. The system learns a complete working set containing only ideal and Type
2 parasitic classifiers. That is, it correctly weeds out Type 1 and 3, but not Type 2, parasites.
Upon further inspection, it appears that Type 2 parasites are harder to distinguish because
Type 1 and Type 3 parasites fail to obtain reward from the environment. When a classifier
fires for the first time, its strength is determined by environmental reward and payment from
the next firing classifier. The amount received through payments from the next classifier is
independent (at least early in the run) of which Type of classifier is firing. Type 1 and Type
3 classifiers do not gain reward from the environment, while Type 2 and ideal classifiers do

gain reward directly from the environment. Therefore, at the beginning of a run, Type 2

54

parasites and ideal classifiers appear to be equally useful. Type 2 parasites survive because
their disruption of downstream classifiers is hard to identify. It appears that Type 2 parasites
act with charlatan-like behavior.

The third problem aspect examines the performance of the CS when scaling up the number
of classifiers. The hypothesis is that the addition of classifiers will increase noise, resulting in
worse system performance. As expected, doubling the number of classifiers while maintaining
the proportion of parasitic to ideal classifiers from Test 5 to Test 6 decreases performance. The
most dramatic difference between the two runs is the large increase in convergence time. The
SCS under Test 6 used over 4 times the number of generations to converge as in Test 5. Closer
observation of the run shows that the SCS also failed to find a stable working set, explaining
the poor percent-correct score and the relatively low number of mistakes.

The following list summarizes the performance of the SCS across the different problem

aspects:

o Increasing the ratio of parasitic classifiers to ideal classifiers decreases performance

e Type 2 parasitic classifiers are more likely to become part of the working set than Type

1 and Type 3 classifiers because of their charlatan-like behavior

o Increasing the number of classifiers results in a decrease in system’s ability to converge

on a working set

The performance of the SCS on the problem environment shows that parasitic classifiers and
increases in noise levels (due to scaling) do prevent the SCS from achieving ideal performance.
The rest of this chapter is devoted to examining an organizational classifier system (OCS)

designed to overcome some of the shortcomings found in the SCS through autonomously learning

55

collective structures. The next section looks at improving the use of reputation within a classifier

system.

4.4 Using Reputation to Distinguish Parasitic Classifiers

Under a number of different initial conditions, the simple classifier fails to locate parasitic
classifiers. This section suggests a mechanism based on reputation to differentiate parasitic
classifiers from ideal ones. Traditional classifier systems often use a single value, strength,
to predict a classifier’s future performance. By using multiple values reflecting different time
scales, a CS may be able to distinguish the charlatan-like behavior of some parasites. The
OCS, presented in the next section, uses two reputation values, a long-term and short-term
strength, to help overcome the parasite problem. Before examining parasitic detection, this
section provides an intuitive explanation of reputation.

One definition for reputation is any stored information about previous performance. Thus,
the reputation of a car manufacturer can be captured by people’s opinion about previously
manufactured vehicles. As stated in Chapter 2, people are motivated to use reputation values
to reduce transaction costs. Reputation, acting as a predictor of future performance, can
reduce uncertainties during a transaction. For example, instead of researching the quality of
each particular car, a buyer relies on published consumer reports. Different types of reputation
attributes capture different types of information. In particular, some values examine the same
quality over different lengths of time. For example, a buyer may be interested in a car’s
achievable gas mileage during the first, second, and tenth years. A car with a high first year

value may or may not perform well over time. The buyer must carefully examine the meanings

56

of different reputation values to make the best decisions. Next, the section examines how
classifier systems use reputation during conflict resolution.

A useful way of studying classifier systems is to view a classifier’s strength as a type of
reputation indicating future performance. Conflict resolution uses strength to resolve which
classifiers should fire, while credit allocation through the bucket brigade algorithm updates
strength values. Strength is a reputation value indicating the amount of reward that a classifier
is predicted to bring into the system. Thus, conflict resolution uses reputation to reduce the
risk of firing less productive classifiers. Unfortunately, the long-term nature of strength values
conflicts with the short-term goals of conflict resolution, as described next.

Conflict resolution attempts to select those classifiers that maximize reward from the envi-
ronment. Ideally, conflict resolution would select those classifiers that maximize performance
over the lifetime of the system. To this effort, conflict resolution uses a classifier’s strength as
an indication of performance over many generations. However, as the system changes (both
through credit allocation and rule-discovery), there is a need to explore alternative selections.
Conflict resolution has a short-term goal to find the highest fit classifier for the current situ-
ation, including the current classifier in the working set. At the same time, the system has a
long-term goal to find a set of classifiers that achieves the maximum reward possible given the
entire population of classifiers. Unfortunately, strength often changes so gradually that it is a
poor indicator of short-term performance. Thus, conflict resolution may select a strong rule
that is unable to cope with the current state. In particular, charlatans (a type of parasite) gain
strength early while performing poorly over the long-term. Ideally, conflict resolution would

select those classifiers that would maximize the short-term rewards and provide good perfor-

57

mance over the long-term. Next, an improvement to credit allocation and conflict resolution to
better distinguish charlatan-like behavior within an OCS is introduced.

The OCS presented in the next section uses two reputation values based on short-term
and long-term performance. Both organizations and classifiers carry the two reputation values.
From the classifier viewpoint inside an organization, conflict resolution selects which classifiers
should fire based on the most recent performance. A short-term reputation that will be called
ST reputation allows conflict resolution to use a greedy scheme, maximizing performance for
current state of the system. A long-term strength that will be called LT reputation is used to
determine which classifiers stay members of a particular organization. Using the LT reputation
increases the long-term quality of classifiers found within good organizations. Thus, conflict
resolution can make greedy decisions using the ST reputation with greater confidence that the
selected classifiers will not be parasitic. By using a long-term value to determine members of an
organization, the system has greater trust or confidence that the greedy-like decisions by conflict
resolution will select classifiers among those that will likely have sustained performance. From
the organizational viewpoint, conflict resolution uses a long-term reputation, also called LT
reputation, to determine which organizations should affect the environment. Thus, only those
organizations that have sustained performance affect the environment. Similarly, organizations
grow based on their short-term reputation, ST reputation. Those organizations which are
currently performing well have the opportunity to grow and expand their working set.

The next section describes the OCS that combines both the additional reputation values

and organizational structures to improve performance over the SCS.

58

4.5 Organizational Classifier System

The organizational classifier system (OCS) autonomously learns organizational structures by
using both organizational techniques introduced in Chapter 2 and reputation values introduced
in the previous section. The main idea of the OCS model is to separate the ‘good’ rules, those
that lead to optimal decisions, from the ‘bad’ rules, those that lead to sub-optimal decisions.
In essence, the system simultaneously learns competing working sets. This section provides the
implementation details of the OCS, while the next section discusses the experimental results of
running the OCS on the test environment from Section 4.2.

The OCS consists of the following three components:

e The production system
o Credit allocation and conflict resolution schemes

e Organizational growth component

The first two are similar to the components of the SCS, while the third is an additional
learning mechanism relating to organizational growth. The rest of this section describes each

component and the way it differs from the SCS.

The Production System

The production system has similarities to aspects of both to Pitt-style and Michigan-style
classifier systems. Like Pitt-style systems, the OCS contains a population of organizations
containing classifiers. However, OCS organizations differ in two ways: they are of variable
size and they interact with each other. The organizational growth component controls how

organizations are sized, while the production system uses credit allocation and conflict resolution

59

Environment

Current Action Reward
State Message Signal

Production System

Organlzatlon @
@Classifier

Figure 4.2: The OCS production system interacting with the environment.

to control classifier and organization interactions. The production system, similar to Michigan-
style systems, pattern matches classifiers to internal message messages and environment states.
Unlike the Michigan-style systems, each organization contains its own message board to which
classifiers contained in the organization post. While classifiers only post to the organization
containing them, they can read internal messages from any organization. Figure 4.2 shows an

overview of the production system.

Credit Allocation and Conflict Resolution

Credit allocation assigns reputation to both classifiers and organizations, while conflict reso-
lution uses reputation to determine the interactions of the classifiers and organizations. The
schemes used here differ from the traditional Michigan-style systems in that each classifier and

organization carries two values, ST reputation and LT reputation. Below the section examines

60

how credit allocation assigns reputation to each classifier and organization. Later, the section

examines how conflict resolution uses the reputation values.

Credit Allocation

First, a classifier’s reputation is determined by its success at obtaining reward, both through
direct environment signals and through payments from other classifiers. An important part of
a classifier’s reputation is the bucket brigade payment of LT strength made by other classifiers
using the original classifier’s posted internal message. In the equations below, the curly braces
enclose a set of LT reputation values for classifiers that fire after reading the posted internal
message.

A classifier’s ST repulation measures a classifier’s most recent performance. The value for

the ith classifier to fire is calculated as follows:
Vire = R+0b) {Vﬁclc

The R is the reward received from the environment and b3 {Vﬂhlc is a fixed fraction of
the sum of LT reputation values for each classifier using the posted internal message.

A classifier’s LT reputation is similar to the strength values found in Michigan-style systems.
Overlooking taxes for the moment, the LT value for the ith classifier to fire is calculated as

follows:

Vire = (1= b)Vige +6) {sztlc’} t R

61

Thus, a classifier’s LT reputation is determined by the amount that it pays to the previous
classifier, the reward received by the set of classifiers using its posted internal message. In
addition, the LT reputation is reduced every cycle by a tax T. (a fraction of LT reputation)
paid to the organization containing the classifier; the effect is to diminish the strength of those
classifiers that do not fire often.

Next, an organization’s reputation values are indirectly determined by the success of its
classifiers. The reputation values of an organization differ from a classifier’s values in that
the values are indications of longer term performance. Thus, the short-term reputation of an
organization is akin to the long-term reputation of the classifier.

An organization’s ST repulalion is updated each cycle as follows:

/ito = (1= To)Viro + Z TVige — F
ce0

To is a system tax, T, is a tax on each classifier ¢ within the organization O, and F is a fee
pald whenever the organization is selected to affect the environment.

An organization’s LT reputation is an assessment of performance over the lifetime of the
organization. The value is calculated as follows:

‘/LZTO = Ssuccess/sattempts

The Sgyccess is the number of times the organization has caused a reward signal when selected
to affect the environment and Sy¢tempts is the number of times the organization was selected to

affect the environment.

62

Reputation for | Use
Classifier

ST Conflict resolution selects a classifier

LT Organizational growth decides which classifiers remain in an organization
Organization

ST Organizational growth selects which organizations grow

LT Conflict resolution selects which organization affects the environment

Table 4.6: A summary of the uses for ST reputation and LT reputation for both classifiers
and organizations.

Conflict Resolution

Conflict resolution uses the ST reputation for classifiers and LT reputation for organizations.
For classifiers, it uses ST reputation to decide which classifier should fire; for organizations, it
uses LT reputation to decide which organization should affect the environment. In both cases,
conflict resolution selects the classifier or organization that contains the highest reputation.
Because classifiers are contained within organizations, the system optimizes the organization’s
performance in a greedy manner using the short-term value of classifiers. At the same time,
conflict resolution limits the organizations that affect the environment to those containing
working sets that have proven to perform well over time.

Next, the organizational growth component will use a classifier’s LT reputation and an
organization’s ST reputation when sizing an organization. Table 4.6 summarizes the use for

each reputation value.

Organizational Growth Component

The organizational growth operators control the sizing of organizations. The above description
of credit allocation and conflict resolution describes how organizations and classifiers interact

when selecting a classifier to fire. Here, the section describes how organizations vary their size

63

and membership. The OCS randomly selects one of two operators, Grow, or Shrink, to apply
to each organization in the current population. Each operator attempts to change the size of
an organization by either by adding or subtracting classifiers. Now, the section examines the
general nature of the operators and then describe each.

Examining the results in Chapter 2 on the organizational growth model shows that using the
AddOne and SubOne operators results in a more gradual and less volatile search for appropri-
ately sized organizations. In addition, the results from running the SCS on the test environment
show that increasing noise levels through scaling dramatically increases the time needed to con-
verge. Thus, with the hope of keeping disruptions to a minimum, the Grow operator, which
increases the size of organizations, moves a single classifier between organizations. On the other
hand, the Shrink operator can potentially remove all the classifiers of the organization. This
ensures that any classifiers marked as parasites are quickly removed. The resulting bias in favor
of shrinkage reflects the difliculty of removing parasitic classifiers as the key challenge for the
OCS. Below is a description of each operator.

The Grow operator attempts to increase the size of an organization. It considers an or-
ganization’s fitness to be a function of both LT reputation and number of employees in much
the same was as the organizational growth model uses the profit. It first selects a classifier
from the entire population of classifiers not contained in the growing organization. This thesis
examines two methods for selecting this recruited classifier. The first method, random growth,
randomly selects a classifier from the potential pool. The second method, vertical growth, tries
to grow more selectively. Fach organization keeps a list of the classifiers that posted internal
messages that were matched by its members. From this list, a classifier is selected. Regardless

of the method used to select the classifier, the operator then runs a tournament between the two

64

organizations, the growing one and the container of the selected classifier to be recruited. The
organization with the highest salary, calculated as the organization’s ST reputation divided by
the number of its employees, wins the competition and keeps the selected classifier.

The Shrink operator reduces an organization by removing those classifiers that are perform-
ing poorly. Shrink compares each employee’s LT reputation to a threshold set near zero. Those
classifiers whose strength is below the threshold are removed from the organizations. Each
removed classifier joins a separate empty organization.

The following section shows the results of running the OCS on the test environment pre-

sented in Section 4.2.

4.6 Running the OCS on the Test Environment

This section presents the results of running a series of experimental OCS models on the tests
described in Section 4.2. The results are compared to the performance of the SCS using the
same criteria. The section begins by describing the three model variables that the results
examine. It then describes the parameter settings for two versions of the OCS that are used
to examine OCS performance. It continues by analyzing the results of the OCS on the three

problem aspects described in Section 4.2. Finally, the section summarizes the results.

Important Parameters

As with most classifier systems, the OCS is complex and has many parameters to configure.
While many variables were examined in the course of the development of the OCS, most changes
resulted in similar behavior. The following list describes three parameters which, when changed,

resulted in significant performance differences:

65

Period The period is the number of generations (number of times actions are sent to the
environment) between organizational growth cycles. During each test, five period values
were examined: 1, 5, 25, 50 and 100. At issue is the time necessary to optimize and
evaluate a current organizational structure, enabling the organization growth component
to make ‘good’ decisions. The hypothesis is that increasing the period should improve

the OCS’s ability to distinguish parasitic classifiers.

Initial LT Reputation When organizational growth removes a classifier from an organiza-
tion, it places the classifier in a new organization. The initial LT reputation for organiza-
tions is the LT reputation assigned to the new organizations. Because conflict resolution
selects (to affect the environment) the organization with the greatest LT reputation, the
initial setting of the value determines the degree to which these organizations get a chance
to affect the environment in the future. If a low value is used, the system is less likely to
select the organization. However, if a high value is used, the system will more likely select
the organization. Because conflict resolution uses a deterministic approach, it is impor-
tant to ensure that the system continue exploring alternate paths. Thus, the hypothesis

is that increasing the initial LT reputation for organizations will improve performance.

Sizing Strategy The organizational growth component uses two techniques, random growth
and vertical growth, to find classifiers to add to organizations. The hypothesis is that

using the more selective vertical growth mechanism will improve performance.

Next, the section describes two models of the OCS that are used to demonstrate performance

of the OCS on the test environment.

66

Constant | Value | Definition
R 1.0 | Amount of reward signaled by the environment
b 0.1 | The fraction of strength passed between classifiers
To 0.01 | System tax applied to organizations each cycle
T. 0.01 | Classifier tax applied to classifiers each cycle
F 0.1 | Fee each organization pays when affecting the environment
Initial LTO | 0.95 | The initial LT reputation for new organizations

Table 4.7: Summary of the constants and their values used in each run.

Two OCS Models

Because of the plethora of possible versions of the OCS, two models have been selected to
demonstrate overall performance. Table 4.7 shows a list of the relative constants and their
values used in the two runs. The Random OCS has the Grow operator use random growth,
while the Vertical OCS has the Grow operator use vertical growth.

Next, the section examines the performance of the OCS on the three problem aspects

discussed in Section 4.2.

Results

To compare the OCS to the SCS using the performance criteria set in Section 4.2, several
versions of the OCS were examined on the tests also described in Section 4.2. Three aspects
of problem difficulty were examined in the tests. Below is a brief review of the seven tests and
the problem aspects.

The tests are as follows:

Test 1 The 16 ideal classifiers necessary to achieve the maximum reward

Test 2 16 ideal classifiers and 1 Type 2 parasite

Test 3 16 ideal classifiers and 8 Type 2 parasites

67

Test 4 16 ideal classifiers and 5 Type 1, 6 Type 2 and 5 Type 3 parasites

Test 5 16 ideal classifiers and 16 Type 2 parasites

Test 6 32 ideal classifiers and 32 Type 2 parasites

Test 7 16 ideal classifiers and 32 Type 2 parasites

The problem aspects are as follows:

Parasite-to-Ideal Ratio The proportion of parasitic classifiers to ideal ones indicates both
the amount of noise in a system and the degree to which a classifier system must overcome
the parasite problem. Tests 1, 2, 3, 5, and 7 vary the ratio of parasites to ideal classifiers
from zero to two. We expect that performance of both the SCS and OCS will degrade as

the ratio increases. However, the OCS may degrade less quickly.

Parasitic Mix Three types of parasitic classifiers are defined in the previous section. Test 4
examines how the system behaves when faced with parasites from each type. One might
naively expect that Type 3 parasites cause the most difficulty because they fail to both
post the correct next-state message and send the correct action. However, because of the
greater signal difference between a parasite and an ideal classifier, the system should be
able to more easily detect and isolate the Type 3 parasitic classifiers. Thus, depending
on system parameters, either the Type 1 or Type 2 parasites should be most difficult to

distinguish.

Scale Adding classifiers within the system increases the amount of noise that must be overcome.
Comparing Test 5 and 6 will show how a system behaves when the number of classifiers

doubles. In addition to distinguishing between ideal and parasitic classifiers, the system

68

Vertical OCS SCS
Test | Percent Number of Convergence | Percent Number of Convergence
Correct Mistakes Correct Mistakes
1 100 0 0 100 0 0
2 100 0 5000 100 0 20
3 93 1 10000 63 6 4000
5 72 5 90000 51 6 7000
7 70 3 90000 37 6 10000

Table 4.8: Summary of Vertical OCS and SCS performance.

must select a subset of ideal classifiers to be part of the working set. Because competing
organizations isolate and weaken groups of under-performing classifiers, the OCS may

handle the increase in numbers more gracefully than the SCS.

Next, the performance of the OCS on each problem aspect is analyzed.

Parasite-to-Ideal Ratio

In general, the OCS achieved greater percent-correct scores than did the SCS. Although occa-
sionally the OCS fails to distinguish the one parasitic classifier in Test 1. At the same time,
the OCS used much more time to converge. However, in most cases, substantial performance
(high percent-correct scores) were reached during the first few hundred generations. Table 4.8
summarizes the results of the Vertical OCS and the SCS on the five relative tests. This time,
the OCS finds the parasite in Test 2. Figures 4.3 and 4.4 show example runs for Test 3 and
5. In the figures, overall percent correct shows the percent correct achieved up to a particular
generation. The temporal percent correct shows the percent correct achieved between organi-
zational growth cycles. In addition, Figure 4.4 shows the performance of the SCS on the same

test.

69

l T T T T T T T
Overal l
enpor al
0.8 -
& 0.6 -
8
1=
3
2 0.4 -
j)
o
0.2 | -
0 1 1 1 1 1 1 1
0 50000 100000 150000 200000 250000 300000 350000

Ceneration

Figure 4.3: Combined OCS on Test 3 with Period 25 - Mistakes 1 - Convergence 10000.

l T T T T T T T
Overal |
Tenpor al
SCS -----
0.8 B

Percent Correct

0 1 1 1 1 1 1 1
0 50000 100000 150000 200000 250000 300000 350000
Ceneration

Figure 4.4: Combined OCS on Test 5 with Period 25 - Mistakes 5 - Convergence 90000.

70

1 T T T T T T T T T

Overal |l ——
Tenpor al
SCS ------

Percent Correct

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Generation

Figure 4.5: Combined OCS on Test 7 with Period 1 - Mistakes 1 - Convergence 10000. Also
included is the results of the SCS on Test 7.

As mentioned above, varying some parameters dramatically affected performance of the
OCS. Increasing the initial LT strength of an organization generally improved performance, es-
pecially during the later runs. During the runs on tests with low ratios of parasitic classifiers to
ideal classifiers, varying the period between organizational growth did not improve performance.
However, as the parasitic ratio increased, increasing the period between use of organizational
Grow and Shrink operators generally improved performance. Figures 4.5 through 4.9 show
representative runs of the Vertical OCS on Test 7. In addition, Figure 4.5 shows the corre-
sponding result of the SCS on Test 7. Using vertical growth or random growth resulted in
similar behavior.

An unexpected result was the formation of default hierarchies among the interacting orga-
nizations during several runs. Default hierarchies are hierarchical relationship of rules. Some

rules act as general rules, matching a broad number of conditions. Other rules act as exceptions

71

l T T T T
Overal |l ——
Tenpor al
0.8 —
3 0.6 E
8 N
g
2 0.4 -
o
a
0.2 —
0 1 1 1 1
0 50000 100000 150000 200000 250000

Ceneration

Figure 4.6: Combined OCS on Test 7 with Period 5 - Mistakes 3 - Convergence 1000.

l T T T T T T T
Overal |
Tenpor al
0.8 B
3 0.6 E
8
IS
3
s 0.4 |- B
o
a
0.2 | B
0 1 1 1 1 1 1 1
0 50000 100000 150000 200000 250000 300000 350000

Ceneration

Figure 4.7: Combined OCS on Test 7 with Period 25 - Mistakes 3 - Convergence 90000.

72

l T T T T
Overal |
Tenpor al
0.8 B
3 0.6 3
8
IS
3
s 0.4 |+ B
o
a
0.2 B
0 1 1 1 1
0 50000 100000 150000 200000 250000

Figure 4.8: Combined OCS on Test

Ceneration

7 with Period 50 - Mistakes 1 - Convergence 75000.

l T T T T T T T T T
Overal |
Tenpor al
0.8 B
3 0.6 E
8
IS
3
s 0.4 |+ B
o
a
0.2 | B
1 1 1 1 1 1 1 1 1
0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

Ceneration

Figure 4.9: Combined OCS on Test 7 with Period 100 - Mistakes 3 - Convergence 20000.

73

to the general rules, matching a subset of conditions. During some runs, the OCS evolved one
large organization containing a complete working set including some parasitic classifiers. For
the most part, this organization is selected to affect the environment. A smaller organization
containing a lower ratio of parasitic classifiers to ideal classifiers also evolves. Because the
smaller organization has fewer parasites, its LT reputation is higher than the larger organiza-
tion. Thus, when a classifier from the smaller organization can fire, conflict resolution chooses
the smaller organization to affect the environment. Essentially, the smaller organization acts as
an exception to the more general behavior of the large organization. The effect is to maintain
a high percent-correct score, while allocating significant strength a number of parasites.

Next, the section examines the performance of the OCS when faced with varying types of

parasites.

Parasitic Mix

The results of running the OCS on Test 4 (containing various types of parasitic classifiers) var-
ied depending on whether random growth or vertical growth were used during organizational
growth. The SCS outperformed the Random OCS regardless of the initial LT reputation for
organizations and the period. The Vertical OCS achieved significantly higher percent-correct
scores than the SCS. This argues that intelligent recruitment is a key determinant of orga-
nizational success. Similar to the SCS, the only parasites that achieved significant strength
(were members of the most successful organizations) were Type 2 parasites. The results of the
Vertical OCS are summarized in the Table 4.9.

Next, the section examines the performance of the OCS when scaling up the number of

classifiers.

74

Period | Percent Correct Number of Mistakes Convergence
1 68 5 8000
5 83 5 15000
25 82 3 65000
50 86 2 30000
100 78 4 50000

Table 4.9: Summary of the Vertical OCS performance on Test 4.

Scale

Similar to the SCS, OCS performance dropped when doubling the number of classifiers from
Test 5 to Test 6. However, the OCS did generally achieve higher percent-correct scores than
did the SCS. In addition, a very interesting pattern of improvement occurs during the Vertical
OCS’s run when increasing the period between use of organizational operators. Figure 4.10
and Figure 4.11 show the performance of the Vertical OCS on Test 7 using periods of 50 and
100 respectively. Notice that at the ends of the runs, the temporal scores increase dramatically.
This can best be seen in Figure 4.11. It appears that after hundreds of thousands of generations,
the OCS improves the most successful organization. A close examination of the organizational
structure of the system at the end of these runs shows that the system sustains percent-correct
scores near 0.7. It appears that the OCS contained two main competing organizations, one of
which slowly lost strength as the run progressed. In the end, the one containing the higher-
quality working set prevailed.

The rest of this section summarizes the results of the OCS-SCS comparison.

Result Summary

The following list summarizes the results of the OCS across the three aspects of problem

difficulty.

75

Percent Correct

Figure 4.10:

Percent Correct

l T T T T
Overal |l ——
Tenpor al

0.8 B
0.6 B
0.4 |+ B
0.2 B

0 1 1 1 1

0 50000 100000 150000 200000 250000

Combined OCS on Test

Ceneration

7 with Period 50 - Mistakes 1 - Convergence 5000.

l T T T T T T T T T
Overal |l ——
Tenpor al
0.8 B
0.6 B
0.4 |+ B
0.2 | B
1 1 1 1 1 1 1 1 1
0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

Ceneration

Figure 4.11: Combined OCS on Test 7 with Period 100 - Mistakes 3 - Convergence 65000.

76

o Generally, the OCS achieves higher percent-correct scores than the SCS as the ratio of
parasitic classifiers to ideal classifiers increase. While convergence appears to take much
longer for the OCS, substantial improvements often occur during the first few thousand

generations.

o Type 2 parasites are harder to distinguish for both the OCS and the SCS than other
types. Using vertical growth, the OCS achieves significantly higher percent-correct scores

than the SCS, while using random growth, the OCS performs slightly worse than the SCS.

¢ When increasing the number of classifiers, the OCS continued to achieve higher percent-
correct scores over the SCS. Additionally, dramatic improvement occurred at the ends of

the runs using periods of 50 and 100.

The above results show that the OCS succeeded in isolating a greater number of parasitic
classifiers from the most successful organization. As the system learned to size organizations it
also occasionally learned default hierarchical relationships between the organizations appropri-
ately. Additionally, the OCS succeeded in running competitions between organizations (shown
most dramatically in the runs relating to Test 7). However, there seems to be a large compu-
tational price for much of the improvements. The next section looks at ways to improve the

OCS for future use.

4.7 Improving the OCS

While the OCS succeeded in learning appropriately sized organizations during these tests,
it retains a number of shortcomings in its current incarnation. The following list describes

potential improvements:

7

Better organizational sizing operators

e Using a non-deterministic conflict resolution scheme

Using a rule-discovery mechanism such as an appropriately modified GA

¢ Re-examining reputation

The rest of this section looks at each of the above strategies.

Better Organizational Sizing Operators

The organizational growth component of the OCS controls the size of organizations by applying
organizational operators to each organization. Two methods, random and vertical growth, were
used by the Grow operator when increasing the size of successful organizations. Under ‘easy’
conditions, both methods resulted in similar performance. However, when faced with large
numbers of different types of parasitic classifiers, using vertical growth was the superior choice.
Since results were so sensitive to the choice of Growth operator, a number of other methods
should be explored. Examples include selecting classifiers with high reputation values and
keeping a pool of free agents (those classifiers that are not part of any organization). Classifiers
that have either been removed from an organization by the Shrink operator or newly created
might be put into the pool.

Similarly, other methods for shrinking an organization should be tried. Currently, the OCS
waits until classifiers lose most of their LT reputation before ejecting them from an organization.
However, waiting implies losing the reputation information gained over the previous firings. By
removing classifiers as soon as conflict resolution regularly selects alternative classifiers, the

system may make better use of the LT reputation in the context of a different working set.

78

Using a Non-Deterministic Conflict Resolution Scheme

To reduce some complexity, the current OCS uses a deterministic conflict resolution scheme
by always selecting the classifier or organization with the greatest reputation. However, this
means that the OCS may not explore good alternatives. The effect of using a non-deterministic
scheme may be two-fold. First, there may be an improvement in the ability of the OCS to
simultaneously evaluate multiple organizations and classifiers. Second, the dependence of the
OCS on using high initial LT reputation values for organizations may decrease. The second
case is important because the new organizations often contain known parasitic classifiers which

generally should not be allowed to fire.

Using a Rule-discovery Mechanism

A quality that makes classifier systems appealing is that with rule-discovery they can learn
new rules to improve the system. The above OCS does not use rule-discovery and is therefore
limited to only learning how to better use given rules. Currently, traditional classifiers often
use the strength of the classifier for fitness to be used by a genetic algorithm. An alternative,
appropriate for an OCS, would be to remove known parasitic classifiers from the system alto-
gether and rely on the GA to form replacements. To ensure sustained performance, the system

could maintain the highest fit organizations by retaining parent classifiers.

Re-examining Reputation

In addition to introducing organizational structures, this thesis examined the use of multiple
reputation values. Of significant value is the idea that keeping track of reputation on different

time scales (long-term versus short-term) and at different levels (classifiers and organizations)

79

provides a way of discovering charlatan-like behavior. One improvement to the current OCS
may be to increase the number of time scales examined even further, providing greater control

to conflict resolution.

4.8 Summary

This chapter presents a study of organizational learning within a simple classifier system (SCS).
It begins by introducing the parasitic problem faced by all classifier systems trying to solve
problems that require memory. By nature, parasites appear attractive, while delivering less than
advertised services. Considering the parasite problem, the chapter presents a test environment
appropriate for testing the performance of different classifier systems. It examines the nature
of CS solutions which include learning a working set of classifiers that are regularly selected by
conflict resolution.

Using the test environment, the chapter explores the performance of the SCS along three
problem aspects: ratio of parasitic classifiers to ideal ones, parasitic mix, and scaling. The
results show that parasitic classifiers do reduce performance.

Before building an organizational classifier system (OCS), the chapter introduces new credit
allocation and conflict resolution schemes that use two reputation values, LT reputation and
ST reputation, each keeping track of performance over different time scales. The chapter
then describes the implementation differences between the OCS and the SCS. Afterwards, the
chapter explores the performance of the OCS in the test environment. The OCS succeeds in
isolating a greater number of parasitic classifiers from the most successful organization. As the

system learns to appropriately size organizations, it also occasionally learns default hierarchical

80

relationships between the organizations. The chapter ends by providing a discussion of possible
future improvements to the OCS.

The next chapter summarizes the thesis and presents concluding remarks.

81

Chapter 5

Conclusion

The primary focus of this study has been the investigation of autonomous formation of appro-
priately sized organizations within classifier systems. The study of transaction costs from the
field of economics has led to insights into the formation and sizing of organizations. Building on
this foundation, the thesis has used different forms of reputation together with organizational
sizing techniques to create an organizational classifier system (OCS) capable of autonomously
adjusting the degree of individual and collective behaviors found within Michigan-style and
Pitt-style classifier systems. Results have shown that the OCS is better suited to distinguishing
parasitic (less-than-ideal) classifiers than is a simple Michigan-style classifier system. The rest

of this chapter summarizes the presented work and presents final comments.

5.1 Summary

The first part of this thesis has devoted itself to gaining a better understanding of organizational
growth through the study of transaction costs. Essentially, the theory of transaction costs

explains organizational growth through efforts to reduce the overhead costs associated with

82

any exchange of goods or services. Two mechanisms, using reputation (knowledge of past
performance) and forming organizations of trusted partners, are common ways to reduce these
costs.

The design of an OCS has proceeded in three stages: (1) isolate organizational facets in
an abstract model, (2) analyze the performance of a simple classifier system (SCS), and (3)
design and test an organizational classifier system (OCS). During the first stage, germane to
organizational growth, an abstract model has been built that isolates facets relating to sizing
mechanisms. The results have shown that correct sizing can occur through either incremental or
large steps using operators to both increase and decrease the size of an organization. However,
using incremental steps has led to a more gradual and less volatile search.

The second stage has analyzed some deficiencies of simple classifier systems that must be
overcome in a successful OCS. Before building the OCS, pertinent current work on classifier
systems has been explored. Most systems fall into either the Michigan or Pitt approaches to
classifier systems. The thesis also has presented a simple classifier system (SCS) which captures
some common features of learning classifier systems following the Michigan-style.

To compare CS performance, a memory-depth-one problem which requires the SCS to use
internal memory to obtain the maximum reward has been presented. When solving problems,
an SCS learns a working set of classifiers that conflict resolution regularly selects to fire. The
thesis has shown that from the perspective of a particular working set, some classifiers appear
to be parasitic in that they lead the system to achieve less than optimal performance. Three
types of parasites have been described based on how they lead the system to achieve less than

optimal reward.

83

Three aspects of problem difficulty facing successful applications of the SCS that have been
examined are: (1) the ratio of parasitic classifiers to ideal ones, (2) the mix of types of parasites,
and (3) the scaling of the number of classifiers. The runs of the SCS have been evaluated based
on percent correct, number of mistakes, and convergence times. The results have shown that
the SCS fails both to distinguish parasitic classifiers and learn a stable working set when there
are more than a few parasitic classifiers in the initial population. When examining a mix of
types of parasites, parasites that receive environmental rewards but post inappropriate internal
messages are the most difficult to distinguish and weed out. These classifiers exhibit charlatan-
like behavior by fooling the system into assigning them high strength even though they fail
to lead the system to optimal rewards. Finally, the SCS has taken over four times longer to
converge when the number of classifiers doubled from 32 to 64.

After examining the performance of the SCS on the testing environment, the third stage
has designed and tested an OCS. The thesis has analyzed the use of reputation values in
conventional conflict resolution and credit allocation schemes. Specifically, using traditional
strength values (assigned over the lifetime of a classifier) interferes with conflict resolution’s
short-term goals of selecting the best classifier to take immediate action. By explicitly using
both short-term and long-term reputation values, an OCS should be better able to distinguish
parasitic classifiers. Organizational operators then remove classifiers with poor long-term rep-
utations (LT reputations) from organizations, allowing conflict resolution to use greedy-like
schemes using short-term reputations (ST reputations) when selecting classifiers to post mes-
sages. Thus, a classifier’s long-term performance determines membership within a working
set (the organization) and its short-term performance determines whether it will win internal

conflicts. Organizations also carry two reputation values. An organization’s ST reputation de-

84

termines whether it can grow in size, while its LT reputation determines whether it can affect
the environment.

Next, the organizational classifier system (OCS) has been presented. Like the Pitt-style
systems, the OCS contains a population of organizations containing classifiers. However, OCS
organizations differ in that they are of variable size and they interact with each other. Similar
to Michigan-style approaches, a single population of classifiers interacts with a problem envi-
ronment. Unlike the Michigan systems, however, the OCS contains separate message boards for
each organization. Interaction between organizations occurs when classifiers match messages
from other organizations, assuming that no internal classifier can match an internal message
from its organization’s message board. The formation of organizations occurs through the use
of organizational operators based on the incremental add and subtract operators explored in
the organizational growth model.

After describing the implementation details of the OCS, the thesis has applied the OCS to
the same tests used for the SCS. The OCS succeeds in distinguishing more parasitic classifiers
under difficult conditions. While the OCS quickly finds ‘good’ solutions, it often takes longer
to finally converge. Additionally, the OCS proves sensitive to several parameters including: (1)
the period between use of organizational operators, (2) the initial long-term reputation value
for new organizations, and (3) the method used to size organizations.

The next section closes this thesis with concluding remarks.

5.2 Conclusions

This thesis demonstrates the effectiveness of autonomously sizing organizations within a classi-

fier system. By viewing classifier systems as an economic system, it is possible to use the theory

85

of transaction costs to develop effective mechanisms to form organizations. The importance of
such mechanisms is in the potential to bridge the gap between individual and collective ap-
proaches to classifier systems. Individual approaches can efficiently process classifiers to solve
simple problems, but are unable to tackle more complex problems. Collective approaches ap-
pear to be able to eventually solve harder problems, but are computationally too expensive. By
building a system that autonomously adjusts the degree of individual to collective behavior, it
is possible to have a system that is both efficient and resilient to problem difficulty.

The conclusions of this thesis fall into three categories: (1) the abstract organizational
model, (2) the OCS, and (3) organization-like computational models in machine learning. Below
is a discussion of each.

First, conclusions relating to the abstract organizational growth model are as follows:

e The abstract organizational growth model with idealized operators can efliciently learn
the optimal size of organizations when deciding the fitness of organizations is easy and

the fitness function is unimodal.

e The incremental operators AddOne and SubOne from the organizational growth model
provide a gradual mechanism for searching for optimally sized organizations. The crossover-
like operators, Join and Cut, also form optimally sized organizations; however, the search

process is more oscillatory.

The abstract model provided the groundwork for further exploration of organization siz-
ing by showing that operator pairs such as AddOne/SubOne and Join/Cut can effectively size
abstract organizations. Several recommendations can be made: (1) Further research into orga-
nizational modeling should use abstract models to simplify and isolate specific behaviors and

(2) organization sizing operators should be modeled on the abstract organization operators.

86

The former recommendation suggests a method for understanding complex problems: divide
and conquer. The latter recommendation has been tried here; the organization operators used
in the OCS successfully aid in the sizing of organizations.

Second, conclusions relating to the OCS are as follows:

e The OCS improves the quality of solutions compared to a simple Michigan-style CS with

modest degradation of convergence times.

e The transfer of operator behavior from the abstract organizational growth model to the

OCS provides useful organization operators.

e The analysis of parasitic classifier behavior can lead to insights for model designs over-

coming parasitic behavior.

e Reputation values representing performance over different time periods can be used to

distinguish and isolate charlatan-like parasitic classifiers.

e Default hierarchies can naturally form among organizations within an OCS, improving

the quality of solutions.

Expanding the SCS model, the OCS demonstrates that using organizations can improve the
quality of solutions. In particular, competing organizations of classifiers improves the ability
of the CS to distinguish and isolate parasitic classifiers from ideal ones. Essentially, each orga-
nization contains a potential working set, allowing the OCS to simultaneously evolve different
solutions. In addition, cooperating organizations form default hierarchies with one organiza-
tion acting as a general rule, while the others behave as exceptions. The OCS presented in this
thesis only touches upon the mechanisms necessary to appropriately structure organizations.

However, the potential rewards for further work in this area appear significant. The end of

87

Chapter 4 recommends a number of improvements relating to the specific OCS presented in

that chapter. These include the following:

Better organizational sizing operators

e Using a non-deterministic conflict resolution scheme

Using a rule-discovery mechanism such as an appropriately modified GA

¢ Re-examining reputation

Third, the following conclusion relates to the field of organization-like computational models

in machine learning.

e The study of transaction costs from the field of economics provides useful tools for studying

organization-like computational models in machine learning.

The study of organization-like computational models provides a way of combining the effi-
cient search of individual approaches and the robust search of collective approaches to classifier
systems. Through the study of economics, a better understanding of both traditional classi-
fier systems and the organizational classifier system is obtained. Beyond directly improving
the OCS design presented here, there are important directions for further research for both
the OCS and any organization-like computation model in machine learning. The following list

describes a number of recommendations for future research.

¢ Bounding CS performance by both Michigan-style and Pitt-style classifier systems

¢ Examining convergence issues

e Analyzing classifier behavior within a larger problem set

88

e Exploring other cost-reducing techniques from economics

Because the OCS exhibits behavior from both individual and collective approaches to clas-
sifier systems, solution quality should be bound by both Michigan-style and Pitt-style systems.
This thesis has explored simple Michigan-style performance. To complete the analysis, solution
quality of Pitt-style systems on the same test problem should be examined.

An important quality of a classifier system’s solution is the time for convergence. This thesis
has provided approximate convergence times for percent-correct scores (the effectiveness of the
CS to obtain environment reward). However, to truly evaluate performance, convergence times
need to be based on purely objective criteria. In addition, there are several convergence times
that are important. One is the convergence time for percent-correct scores. Another is the time
for the CS to learn a stable working set.

An important area to research is types of behavior found among individual classifiers. This
thesis has looked at a simple depth-one-memory problem and found three parasitic classifiers
relative to a particular working set. In particular, charlatan-like parasitic classifiers were much
more difficult to distinguish than the others. However, for other test problems, there may be
variations in the types of classifiers found. By researching the types of behavior, improved
model designs may be invented.

Another area that needs further research is the use of other cost-reducing techniques from
economics. This thesis has focused on the organizational growth and reputation to reduce
transaction costs. However, there are other structures, such as a court system and a governing
body, that might be as useful. A more careful analysis of markets should also prove useful in

the design of capable classifier systems.

89

References

Coase, R. H. (1988). The firm, the market, and the law. Chicago: University of Chicago Press.

Culberson, J. C. (1992). GIGA program description and operation. Unpublished manuscript,

University of Alberta, Department of Computing Science, Edmonton, Alberta, Canada.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.

Reading, MA: Addison—Wesley.

Grefenstette, J. J. (1987). Multilevel credit assignment in a genetic learning system. Genetic
algorithms and their applications: Proceedings of the Second International Conference on

Genetic Algorithms, 202-209.

Hayek, F. A. (1945). The use of knowledge in society. The American Economic Review, 35(4),

519-530.

Holland, J. H. (1971). Processing and processors for schemata. In E. L. Jacks (Ed.), Associa-

tive information processing (pp. 127-146). New York: American Elsevier.

Riolo, R. L. (1987a). Bucket brigade performance: I. Long sequences of classifiers. Genetic
algorithms and their applicalion: Proceedings of the Second International Conference on

Genetic Algorithms, 184-195.

90

Riolo, R. L. (1987b). Bucket brigade performance: II. Default hierarchies. Genetic algorithms
and their application: Proceedings of the Second International Conference on Genetic Al-

gorithms, 196-201.

Smith, R. E. (1991). Default heirarchy formation and memory exploitation in learning classi-
fier systems. (TCGA Report No. 91003 and doctoral dissertation). Tuscaloosa: University

of Alabama.

Smith, S. F. (1980). A learning system based on genetic adaptive algorithms. Dissertation

Abstracts International, 41, 4582B. (University Microfilms No. 81-12638).

Westerdale, T. H., (1989). A defense of the bucket brigade. Proceedings of the Third Interna-

tional Conference on Genelic Algorithms, 282-290.

Wilson, S. W., & Goldberg, D. E. (1989). A critical review of classifier systems. Proceedings

of the Third International Conference on Genetic Algorithms, 244-255.

91

